Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ parametrów frezowania wykończeniowego płyt drewnopochodnych na powstawanie wiórów
Języki publikacji
Abstrakty
The effect of operational parameters on the creation of chip particles in the CNC finishing processing of wood-based materials. The object of this study was a comparison of created chips from the process of milling two wood-based materials: medium-density fiberboard, and particleboard, using a modern CNC 5-axis milling center. The materials in the form of blocks were milled at constant revolutions of the cutting tool (18,000 rev/min), with changeable variables of feed rates (8, 10, and 12 m/min), and width of cut (1, 2, and 3 mm). The size of created chips was measured by gravimetric weighing from sieving analysis of the retained volume of chips on sieves with pre-defined mesh sizes. The main emphasis was aimed at studying particles of chips obtained in the finishing process of the milling below <0.125mm. However, the others are mentioned and discussed. Gravimetric differences of the retained volume of chip mass show that created MDF chips are mostly in the size range of <0.250 to 0.125 mm, and particleboard in the size range of <0.500 to 0.250 mm. Distribution of average values in dependence on different conditions shows a decreasing effect with increasing feed rate on the amount of very small chip particles in the volume of both materials. Increasing the feed rate can decrease the amount of very particles in the range below <0.125 mm in the volume of chip mass.
Wpływ parametrów frezowania wykończeniowego płyt drewnopochodnych na powstawanie wiórów. W ramach badań porównano wióry powstające w procesie frezowania dwóch rodzajów płyt drewnopochodnych: MDF oraz płyty wiórowej, przy użyciu nowoczesnego 5-osiowego centrum frezarskiego CNC. Próbki płyt w postaci bloków frezowano przy stałych obrotach narzędzia skrawającego (18 000 obr/min), przy zmiennych posuwach (8, 10 i 12 m/min) oraz zmiennej szerokości skrawania (1, 2, i 3 mm). Wielkość powstałych wiórów mierzono metodą ważenia grawimetrycznego na podstawie analizy przesiewowej zatrzymanej objętości wiórów na sitach o zadanych rozmiarach oczek. Główny nacisk położono na badanie cząstek wiórów otrzymanych w procesie frezowania wykańczającego poniżej <0,125mm. Różnice grawimetryczne objętości zatrzymanej masy wiórów wskazują, że powstałe wióry z MDF występują przeważnie w zakresie wielkości <0,250 do 0,125 mm, a z płyty wiórowej w zakresie wielkości <0,500 do 0,250 mm. Rozkład wartości średnich w zależności od różnych warunków wykazuje malejący wpływ wraz ze wzrostem prędkości posuwu na ilość bardzo małych cząstek wiórów w objętości obu materiałów. Zwiększenie posuwu może spowodować zmniejszenie ilości cząstek w zakresie poniżej <0,125 mm w objętości masy wiórów.
Rocznik
Tom
Strony
79--90
Opis fizyczny
Bibliogr. 33 poz., tab., rys.
Twórcy
autor
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia
autor
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia
autor
- Łukasiewicz Research Network - Poznań Institute of Technology, 60-637 Poznań, Poland
autor
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60-637 Poznań, Poland
Bibliografia
- 1. Azemović, E., Horman, I., & Busuladžić, I. (2014). Impact of planning treatment regime on solid fir wood surface. Procedia Engineering, 69, 1490-1498. https://doi.org/10.1016/j.proeng.2014.03.146
- 2. Azizi, M., Mohebbi, N., & De Felice, F. (2016). Evaluation of sustainable development of the wooden furniture industry using multi-criteria decision-making method. Agriculture and agricultural science procedia, 8, 387-394. https://doi.org/10.1016/j.aaspro.2016.02.034
- 3. Bakar, B. F. A., Hiziroglu, S., & Tahir, P. M. (2013). Properties of some thermally modified wood species. Materials & Design, 43, 348-355. https://doi.org/10.1016/j.matdes.2012.06.054
- 4. Bendikiene, R., and Keturakis, G. 2017. The influence of technical characteristics of wood milling tools on its wear performance. In J Wood Sci 63, 606–614 (2017). https://doi.org/10.1007/s10086-017-1656-x
- 5. Brown, S.J., et. al. 2013. Thoracic and respirable particle definitions for human health risk assessment. In Particle and Fibre Toxicology 2013, 10:12 http://www.particleandfibretoxicology.com/content/10/1/12
- 6. Červený, L., Sloup, R., Červená, T., Riedl, M., & Palátová, P. (2022). Industry 4.0 as an Opportunity and Challenge for the Furniture Industry—A Case Study. Sustainability, 14(20), 13325. https://doi.org/10.3390/su142013325
- 7. Chae, N., Lee, M. H., Choi, S., Park, B. G., & Song, J. S. (2019). Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning. Journal of hazardous materials, 369, 727-745. https://doi.org/10.1016/j.jhazmat.2019.02.093
- 8. Dilik, T., & Hiziroglu, S. (2012). The bonding strength of heat-treated compressed Eastern redcedar wood. Materials & Design, 42, 317-320. https://doi.org/10.1016/j.matdes.2012.05.050
- 9. Dobashi, R. (2009, May). Risk of dust explosions of combustible nanomaterials. In Journal of Physics: Conference Series (Vol. 170, No. 1, p. 012029). IOP Publishing. https://doi.org/10.1088/1742-6596/170/1/012029
- 10. Dorrian, M. D., & Bailey, M. R. (1995). Particle size distributions of radioactive aerosols measured in workplaces. Radiation protection dosimetry, 60(2), 119-133. https://doi.org/10.1093/oxfordjournals.rpd.a082709
- 11. Dudarski, G., Kowal, M., & Czestochowski, C. (2015). Dust explosion hazard in wood processing. Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology, 90. (61–65)
- 12. Eckhoff, R. (2016). Explosion hazards in the process industries. Gulf Professional Publishing. 2nd ed.; Gulf Professional Publishing: Houston, TX, USA. ISBN: 9780128032749.
- 13. Eckhoff, R. K. (2005). Current status and expected future trends in dust explosion research. Journal of loss prevention in the process industries, 18(4-6), 225-237. https://doi.org/10.1016/j.jlp.2005.06.012
- 14. Forrest, A.; et. al. 2017. Circular Economy Opportunities in the Furniture Sector; Eunomia Research & Consulting Ltd: Brussels, Belgium, 2017; pp. 3–5. Available online: https://www.eunomia.co.uk/reports-tools/circular-economy-opportunities-in-the-furniture-sector/ (accessed on 2 March 2022)
- 15. Gottlöber, C. (2023). Cutting and Disintegration of Wood and Wood-Based Materials. In Springer Handbook of Wood Science and Technology (pp. 595-677). Springer, Cham.
- 16. Holla, K., Ristvej, J., Moricova, V., & Novak, L. (2016). Results of survey among SEVESO establishments in the Slovak Republic. Journal of chemical health & safety, 23(2), 9-17. https://doi.org/10.1016/j.jchas.2015.03.003 https://bioresources.cnr.ncsu.edu/resources/cutting-forces-and-chip-morphology-in-medium-density-fiberboard-orthogonal-cutting/
- 17. Kowaluk, G. 2012. Machining Technology for Composite Materials Principles and Practice. 16 - Machining processes for wood-based composite materials. In Woodhead Publishing Series in Composites Science and Engineering 2012, Pages 412-425. https://doi.org/10.1533/9780857095145.3.412.
- 18. Kumar, D., & Kumar, D. (2018). Sustainable management of coal preparation. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812632-5.00012-4
- 19. Lučić, R. B., Čavlović, A., Ištvanić, J., Ðukić, I., & Mihulja, G. (2007). Power requirements during wood planing and surface quality of planed elements. In Proceedings of the 2nd International Scientific Conference Woodworking Technique, Zalesina, Croatia, 11-15 September, 2007 (pp. 215-220). Faculty of Forestry, University of Zagreb. ISBN: 9536307944
- 20. Malkoçoğlu, A. (2007). Machining properties and surface roughness of various wood species planned in different conditions. Building and Environment, 42(7), 2562-2567. https://doi.org/10.1016/j.buildenv.2006.08.028
- 21. Occupational Safety and Health Administration. Wood Dust. In Safety and Health Topics. Available online: https://www.osha.gov/wood-dust/hazards (accessed on 31 April 2022)
- 22. Očkajová, A., Kučerka, M., Kminiak, R., Krišťák, Ľ., Igaz, R., & Réh, R. (2020). Occupational exposure to dust, produced when milling thermally modified wood. International Journal of Environmental Research and Public Health, 17(5), 1478. https://doi.org/10.3390/ijerph17051478
- 23. Palmqvist, J., & Gustafsson, S. I. (1999). Emission of dust in planing and milling of wood. Holz als Roh- und Werkstoff, 57(3), 164-170. https://doi.org/10.1007/s001070050035
- 24. Pałubicki, B., Hlásková, L., & Rogoziński, T. (2020). Influence of exhaust system setup on working zone pollution by dust during sawing of particleboards. International Journal of Environmental Research and Public Health, 17(10), 3626. https://doi.org/10.3390/ijerph17103626
- 25. Pędzik, M., Rogoziński, T., Majka, J., Stuper-Szablewska, K., Antov, P., Kristak, L., ... & Kučerka, M. (2021). Fine dust creation during hardwood machine sanding. Applied Sciences, 11(14), 6602. https://doi.org/10.3390/app11146602 26. Renda, A.; et al. 2014. The EU Furniture Market Situation and a Possible Furniture Products Initiative. Available online: https://op.europa.eu/en/publication-detail/-/publication/64921615-f0c9-4577-9087-8f25748ad5d8 (accessed on 31 April 2022).
- 27. Santamaría-Herrera, A., Hoyuelos, F. J., & Casado-Marcos, C. (2023). Characterization of the explosiveness of wood dust. Process Safety and Environmental Protection, 169, 252-259. https://doi.org/10.1016/j.psep.2022.10.087. 28. Silvius, G., Ismayilova, A., Sales-Vivó, V., & Costi, M. (2021). Exploring barriers to circularity in the EU furniture industry. Sustainability, 13(19), 11072. https://www.mdpi.com/2071-1050/13/19/11072
- 29. Teng, Y.; et. al. 2014. Cutting Forces and Chip Morphology in Medium Density Fibreboard Orthogonal Cutting. In BioResources 9(4), 5845-5857. Available in:
- 30. Tong, R., Cheng, M., Zhang, L., Liu, M., Yang, X., Li, X., & Yin, W. (2018). The construction dust-induced occupational health risk using Monte-Carlo simulation. Journal of cleaner production, 184, 598-608. https://doi.org/10.1016/j.jclepro.2018.02.286
- 31. Vandličková, M., Marková, I., Makovická Osvaldová, L., Gašpercová, S., Svetlík, J., & Vraniak, J. (2020). Tropical wood dust—granulometry, morphology and ignition temperature. Applied Sciences, 10(21), 7608. https://doi.org/10.3390/app10217608
- 32. Wieruszewski, M., Turbański, W., Mydlarz, K., & Sydor, M. (2023). Economic Efficiency of Pine Wood Processing in Furniture Production. Forests, 14(4), 688. https://doi.org/10.3390/f14040688
- 33. Yuan, Z., Khakzad, N., Khan, F., & Amyotte, P. (2015). Dust explosions: A threat to the process industries. Process Safety and Environmental Protection, 98, 57-71. https://doi.org/10.1016/j.psep.2015.06.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0a04870-8fb8-44cf-b6b8-934c875b3b40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.