Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Experiments have shown reactor confinement, wall temperatures and radiative transfer to influence the flame length and lift-off characteristics of oxy-methane flames. In this study, the performances of the Shear Stress Transport (SST) k-ω turbulence model, a skeletal methane combustion mechanism (16 species and 41 reactions) and two weighted sum of gray gas models (WSGGM) towards capturing these flame characteristics are evaluated against measurements obtained from oxy-methane flames across a wide range of oxidizer O2/CO2 ratios and fuel Reynolds numbers. Gas composition, gas and wall temperatures, flame length measurements and inferences of lift-off heights from OH* chemiluminescence imaging are employed in the assessment. The corresponding numerical estimate of flame length and lift-off heights were made by determining the flame shape by the locus of points at which the CO concentrations reduce to 1% of their peak values within the flame. The predicted gas temperatures and compositions compared reasonably well against measurements. The criterion for defining the flame shape based on CO concentrations appears promising since the trends in chemical flame length and lift-off height predictions agreed reasonably well with the measurements across the range of oxidizer concentrations and fuel Reynolds numbers. Flame length prediction sensitivities to the wall temperatures and the WSGGM model were also assessed.
Czasopismo
Rocznik
Tom
Strony
370--377
Opis fizyczny
Bibliogr. 29. poz., rys., tab., wykr.
Twórcy
autor
- Department of Chemical Engineering, Harrington Hall Room 323, 241 Centennial Drive, University of North Dakota, Grand Forks, ND 58202-7101, USA
autor
- SINTEF Energy Research, 7465 Trondheim, Norway
Bibliografia
- [1] R. Soundararajan, T. Gundersen, M. Ditaranto, Oxy-combustion coal based power plants: study of operating pressure, oxygen purity and downstream purification parameters, Chemical Engineering Transactions 39 (2014) 229–234.
- [2] S. G. Sundkvist, A. Dahlquist, J. Janczewski, M. Sjödin, M. Bysveen, M. Ditaranto, Ø. Langørgen, M. Seljeskog, M. Siljan, Concept for a combustion system in oxyfuel gas turbine combined cycles, Journal of Engineering for Gas Turbines and Power 136 (10) (2014) 101513.
- [3] R. Stanger, T.Wall, R. Spoerl, M. Paneru, S. Grathwohl, M.Weidmann, G. Scheffknecht, D. McDonald, K. Myöhänen, J. Ritvanen, et al., Oxyfuel combustion for CO2 capture in power plants, International Journal of Greenhouse Gas Control 40 (2015) 55–125.
- [4] P. Glarborg, L. L. Bentzen, Chemical effects of a high co2 concentration in oxy-fuel combustion of methane, Energy & Fuels 22 (1) (2007) 291–296.
- [5] W. Jerzak, The effect of adding co2 to the axis of natural gas combustion flame on the variations in co and nox concentrations in the combustion chamber, Journal of Power Technologies 94 (3) (2014) 202–210.
- [6] S. Hjartstam, F. Normann, K. Andersson, F. Johnsson, Oxy-fuel combustion modeling: performance of global reaction mechanisms, Industrial & Engineering Chemistry Research 51 (31) (2012) 10327–10337.
- [7] P. Kutne, B. K. Kapadia, W. Meier, M. Aigner, Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor, Proceedings of the Combustion Institute 33 (2) (2011) 3383–3390.
- [8] M. Ditaranto, J. Hals, Combustion instabilities in sudden expansion oxy–fuel flames, Combustion and Flame 146 (3) (2006) 493–512.
- [9] B. L. Norheim, Lift-off of methane jet flames in o2/co2 atmospheres, Master’s thesis, Norwegian University of Science and Technology (2009).
- [10] J. Sautet, L. Salentey, M. Ditaranto, J. Samaniego, Length of natural gas-oxygen non-premixed flames, Combustion science and technology 166 (1) (2001) 131–150.
- [11] M. Ditaranto, T. Oppelt, Radiative heat flux characteristics of methane flames in oxy-fuel atmospheres, Experimental Thermal and Fluid Science 35 (7) (2011) 1343–1350.
- [12] K. Bhadraiah, V. Raghavan, Numerical simulation of laminar co-flow methane–oxygen diffusion flames: effect of chemical kinetic mechanisms, Combustion Theory and Modelling 15 (1) (2010) 23–46.
- [13] C. Galletti, G. Coraggio, L. Tognotti, Numerical investigation of oxynatural-gas combustion in a semi-industrial furnace: validation of cfd sub-models, Fuel 109 (2013) 445–460.
- [14] Z. Mei, J. Mi, F. Wang, P. Li, J. Zhang, Chemical flame length of a methane jet into oxidant stream, Flow, Turbulence and Combustion 4 (94) (2015) 767–794.
- [15] F. Christo, B. B. Dally, Modeling turbulent reacting jets issuing into a hot and diluted coflow, Combustion and flame 142 (1) (2005) 117–129.
- [16] A. Frassoldati, P. Sharma, A. Cuoci, T. Faravelli, E. Ranzi, Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow, Applied Thermal Engineering 30 (4) (2010) 376–383.
- [17] Z. Mei, J. Mi, F. Wang, C. Zheng, Dimensions of ch4-jet flame in hot o2/co2 coflow, Energy & Fuels 26 (6) (2012) 3257–3266.
- [18] Y. Kang, X. Lu, Q. Wang, X. Ji, S. Miao, J. Xu, G. Luo, H. Liu, Experimental and modeling study on the flame structure and reaction zone size of dimethyl ether/air premixed flame in an industrial boiler furnace, Energy & Fuels 27 (11) (2013) 7054–7066.
- [19] G. Krishnamoorthy, A new weighted-sum-of-gray-gases model for oxy-combustion scenarios, International Journal of Energy Research 37 (14) (2013) 1752–1763.
- [20] R. Johansson, K. Andersson, B. Leckner, H. Thunman, Models for gaseous radiative heat transfer applied to oxy-fuel conditions in boilers, International Journal of Heat and Mass Transfer 53 (1) (2010) 220–230.
- [21] H. Abdul-Sater, G. Krishnamoorthy, M. Ditaranto, Predicting radiative heat transfer in oxy-methane flame simulations: an examination of its sensitivities to chemistry and radiative property models, Journal of Combustion 2015.
- [22] P. Nakod, G. Krishnamoorthy, M. Sami, S. Orsino, A comparative evaluation of gray and non-gray radiation modeling strategies in oxy-coal combustion simulations, Applied Thermal Engineering 54 (2) (2013) 422–432.
- [23] Z. Wheaton, D. Stroh, G. Krishnamoorthy, M. Sami, S. Orsino, P. Nakod, A comparative study of gray and non-gray methods of computing gas absorption coefficients and its effect on the numerical predictions of oxy-fuel combustion, Industrial Combustion (2013) 1–14.
- [24] ANSYS Inc., Canonsburg, PA, ANSYS FLUENT User’s Guide, Version 15 (2014).
- [25] M. D. Smooke (Ed.), Reduced kinetic mechanisms and asymptotic approximation for methane-air flames: a topical volume, Vol. 384 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1991.
- [26] J. Van Doormaal, G. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Numerical heat transfer 7 (2) (1984) 147–163.
- [27] S. Patankar, Numerical heat transfer and fluid flow, CRC press, Washington, DC, 1980.
- [28] B. Leonard, S. Mokhtari, Ultra-sharp nonoscillatory convection schemes for high-speed steady multidimensional flow, in: NASATM1- 2568 (ICOMP-90-12), NASA Lewis Research Center, 1990.
- [29] H. K. Kim, Y. Kim, S. M. Lee, K. Y. Ahn, Studies on combustion characteristics and flame length of turbulent oxy- fuel flames, Energy & fuels 21 (3) (2007) 1459–1467.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f09fe2b1-67cc-45bd-90b3-38c90744f202