Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Temperature is one of the most important key parameter to consider in measurement and mechanical engineering, because every measurement has to be conducted with reference to standard temperature conditions (20°C, ISO 1). Strictly speaking, almost every measurement depends on the accuracy of the temperature measurement, which requires proper calibration. Therefore, standards list detailed criteria to fulfil temperature calibration with high precision. In fact, any calibration is only valid, if the whole measurement chain is taken into account. This would make recalibration necessary with each variation of the components in the measuring set-up (varying cable length, different measurement channel etc.), which is time-consuming or even impossible in practice. For that reason, this paper presents a practicable calibration strategy, which specifies each component individually and later combines the calibration results according to the composition of the measurement chain. This provides a fast and useful way to achieve the required accuracy of temperature measurement. The examined, exemplary measurement chain consists of an industrial platinum resistance thermometer (IPRT), cables with different lengths, an electrical amplifier and a reference temperature calibrator.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
56--65
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
autor
- Chair of Machine Tools and Control Engineering (IMD), Dresden, Germany
autor
- Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Dresden, Germany
autor
- Chair of Machine Tools and Control Engineering (IMD), Dresden, Germany
autor
- Chair of Machine Tools and Control Engineering (IMD), Dresden, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Dresden, Germany
Bibliografia
- [1] EN ISO 1, 2016, Geometrical product specifications (GPS) – Standard reference temperature for the specification of geometrical and dimensional properties.
- [2] DAVIES M.A., UEDA T., M'SAOUBI R., MULLANY B., COOKE A.L., 2007, On the measurement of temperature in material removal processes, CIRP Annals, 56/2, 581–604.
- [3] CHILDS P.R.N., GREENWOOD J.R., LONG C.A., 2000, Review of temperature measurement, Review of scientific instruments, 71/8, 2959–2978.
- [4] MICHALSKI L., ECKERSDORF K., KUCHARSKI J., MCGHEE J., 2001, Temperature measurement, John Wiley & Sons.
- [5] NICHOLAS J.V., WHITE D.R., 2002, Traceable temperatures: an introduction to temperature measurement and calibration [2.ed.], Wiley.
- [6] PARALI L., DURMAZ F., AYDIN O., 2018, Calibration of a Platinum Resistance Thermometer (Pt-100) and Its Measurement Uncertainty Analysis, Celal Bayar University Journal of Science, 14/1, 41–49.
- [7] DIN EN 60751, 2009, Industrielle Platin-Widerstandsthermometer und Platin-Temperatursensoren.
- [8] DAkkS, 2010, Kalibrierung von Widerstandsthermometern: DAkkS-DKD-R 5-1, Deutsche Akkreditierungsstelle GmbH.
- [9] CHEN H.X., TANG H.Q., LI Y.Y., 2013, Research on Methods of Improving Platinum Resistance Sensor’s Temperature Measurement Precision, Advanced Material Research, 645, Trans Tech Publications, 255–258.
- [10] RUSBY R.L., MACHIN D., 2017, Hysteresis and Instability in Some IPRT Sensors Within Temperature Ranges Extending from – 196°C to 150°C, International Journal of Thermophysics, 38/8, 117.
- [11] FERNICOLA V. C., IACOMINI L., 2008, Approximating the ITS-90 temperature scale with industrial platinum resistance thermometers, International Journal of Thermophysics, 29/5, 1817–1827.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0921fc7-6471-47ff-8680-975241c840c5