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1. Introduction

Presently in infrared thermography use is primarily made of 
two ranges of electromagnetic radiation: LWIR (Long-Wave 
InfraRed) 8–12 µm and MWIR (Medium-Wave Infrared) 
3–5 µm. The LWIR band is frequently used because the radia-
tion strength of objects with a temperature close to 300 K 
is higher than for the MWIR range, which is a direct effect 
of the shape of the Planck’s curves for a black body [1]. The 
currently used detectors for imaging infrared are mainly FPA 
(Focal Plane Array) bolometric matrices. On the other hand, 
popular CMOS cameras are only suitable for observations of 
the SWIR (Short-Wave InfraRed) 1.4–3µm range. There are 
still fields in which the utilisation of FPA is literally impossi-

Autor korespondujący: 
Anna Szajewska, aszajewska@sgsp.edu.pl

Artykuł recenzowany 
nadesłany 31.05.2021 r., przyjęty do druku 28.06.2021 r.

Simulation of the Operation of a Single Pixel 
Camera with Compressive Sensing in  
the Long-Wave Infrared
Anna Szajewska 
The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland

Abstract: Imaging with the use of a single pixel camera and based on compressed sensing 
(CS) is a new and promising technology. The use of CS allows reconstruction of images in various 
spectrum ranges depending on the spectrum sensibility of the used detector. During the study image 
reconstruction was performed in the LWIR range based on a thermogram from a simulated single 
pixel camera. For needs of reconstruction CS was used. A case analysis showed that the CS method 
may be used for construction of infrared-based observation single pixel cameras. This solution may 
also be applied in measuring cameras. Yet the execution of a measurement of radiation temperature 
requires calibration of results obtained by CS reconstruction. In the study a calibration method of the 
infrared observation camera was proposed and studies were carried out of the impact exerted by the 
number of measurements made on the quality of reconstruction. Reconstructed thermograms were 
compared with reference images of infrared radiation. It has been ascertained that the reduction of the 
reconstruction error is not directly in proportion to the number of collected samples being collected. 
Based on a review of individual cases it has been ascertained that apart from the number of collected 
samples, an important factor that affects the reconstruction fidelity is the structure of the image as 
such. It has been proven that estimation of the error for reconstructed thermograms may not be based 
solely on the quantity of executed measurements. 
 
Keywords: single pixel camera, compressed sensing, infrared measurements, thermal camera

ble. These include measurements of spectral ranges that are 
beyond possibilities offered by the present matrices, given the 
insignificant radiated power or frequency of the electromagne-
tic wave lying beyond the detection spectrum. In such rare 
applications it is necessary to use expensive and bulky pho-
tomultipliers or avalanche diodes. Equally cumbersome are 
spectrophotometric measurements [2, 3] and measurements of 
millimetre waves. Among other non-matrix solutions an old 
concept of a single pixel camera SPC (Single-Pixel Camera) 
has been developed, the sources of which may be sought in 
the Nipkov disc [4]. A new method was developed of image 
reconstruction using compressed sensing by a single detec-
tor. Based on methods developed by Candes, Rondberg and 
Tao [5] recently a mathematical approach has been developed 
to the construction of a single pixel camera, which similarly 
as in the initial solution makes use of a single detector only, 
but the data sampling method differs [6, 7]. One of the first 
trials has been carried out by a team of researchers from the 
University of Rice in 2006 [8]. According to the authors the 
new operating principle would allow imaging based on spec-
tral ranges, which for the meantime are unavailable for FPA 
(e.g. terahertz frequencies) [2, 9, 10]. The first attempt at 
building an observation camera in LWIR has already been 
undertaken [11]. However, there is no available information as 
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to the existing measuring SPC camera that would make use 
of CS for far infrared. There is still a theoretical problem for 
the development of such a camera, and namely the necessity 
of identifying the measurement uncertainty and the technical 
concern is the structure of camera modulator.

1.1. Single pixel camera with compressed sensing
Studies of infrared images in the band of 8–12 µm are cum-
bersome for technological reasons. Taking into account tech-
nological limitations, the first image infrared recorders were 
based on a single SPD (single pixel detector) [12]. Each pixel 
of the image was scanned with the use of a mobile optical 
system. A significant drawback of this solution was the long 
scanning time of the entire image, which as an effect contri-
buted to the development of microbolometric matrices with 
dimensions that enable quick imaging at a high resolution. 
Despite a troublesome structure, a significant advantage of the 
SPD measurement system is the homogenous nature of measu-
rement sensitivity. The measurement of the entire image by 
a single detector is deprived of non-linearity connected with 
the sensitivity of particular FPA elements. Pixels in microbo-
lometric matrices have a differing sensitivity, which should be 
compensated by the software. In matrix cameras the amount 
of energy supplied to the matrix pixel comes from a section of 
the projected image. The same principle applies to older SPC 
scanning cameras. Image acquisition in SPC that makes use of 
CS consists of sequential observations of numerous pixels at the 
same time. This means that the amount of radiation reaching 
the detector in a single measurement is equal to the amount 
of energy coming from a set of selected pixels–hence the sen-
sitivity of the detector may be lower than in FPA, and this in 
turn increases the relation of the signal to the detector’s ther-
mal noise. In normal circumstances reconstruction of an image 
requires a number of measurements conforming to the number 
of all pixels on the assumption that each measurement con-
cerns the subsequent pixel. The CS reconstruction method [5, 
13, 14] enables a programme-based image reconstruction based 
on a much lower number of samples than the number of all 
pixels in the image. It is clear that in the case of this method 
a part of some insignificant information may be lost, similarly 
as in loss methods of image compression. In traditional came-
ras acquisition takes place spatially in one moment (limited 
only by the detector’s exposure time). In a single pixel camera 
image acquisition takes place by spatial and time multiplexing. 
This implies a longer time needed to obtain samples, which is 
an obvious drawback of this method. Furthermore, research is 
being carried out on movement recording [15]. Correct image 
reconstruction requires the selection of pixel sequence for each 
measurement (measurement matrix). This may be done with 
the use of a SLM modulator (spatial light modulator) provided 
between the detector and the source of radiation. SLM may 
function on a transmission or reflection principle. To enhance 
the effectiveness (shorten the time) studies are underway on 
adaptive algorithms that generate pixel masks, which may 
considerably minimise the number of required measurements 
[16–18]. A solution that still remains universal is the initial 
concept of applying mask sets, which meet the property of 
RIP (Restricted Isometry Property). This particular property is 
usually fulfilled by masks generated in a random way [19]. Ada-
ptive algorithms of mask selection prove to be more effective 
in specified cases, as has been indicated in [20]. An interesting 
structural property of SPC with CS is the fact that retuning of 
the camera to a different spectral range is theoretically limited 
to a change of the type of used detector. The second property is 
the possibility of eliminating the optical system [21]. A change 
of the focal length may only be limited to a change of distance 
between the detector and the modulator, similarly as in the 
camera obscura. This simplifies the structure and eliminates 

the problem of diverse kinds of optical aberrations. Presently 
studies are underway on observation cameras in the medium 
infrared belt and hyperspectral cameras [2, 9, 22].

1.2. Image acquisition
Experiments on the development of CS carried out to date 
were based on two SLM solutions. The first one of them is 
image projection on a matrix of mobile mirrors. Given the ava-
ilability of the DMD (Digital Micro-mirror Device) technology, 
such a solution is frequently used in research [3, 6-9,14]. Matri-
ces of movable mirrors are executed in the MEMS (Micro-elec-
tro-mechanical systems) technology. The dimensions of DMD 
micro mirrors are equal to a few or several micrometres and are 
made of aluminium. Mirrors are set up in matrices that allow 
imaging in resolutions ranging from VGA to 4k Ultra HD. 
Mass-produced matrices allow mirror revolution by an angle 
of ±12° or ±17° [23]. Regardless of the type, they may ope-
rate at different spectrum ranges: 363–420 nm, 400–700 nm, 
700–2500 nm. Maximum frequencies of mirror position change 
may come up to 32 kHz for the whole matrix. The usage of 
those matrices in SPC is an issue of secondary importance. 
However, the application of the DMD technology for SPC still 
remains in an experimental phase. There are presently certain 
limitations of this technology related to its use in far infrared:

−− the mirror may not be smaller than the length of the wave, 
and hence the length of the tested wave is limited by the 
size of the micro-mirror,

−− there is a transmittance barrier of masking glass for the 
DMD matrix for waves of 8–12 µm,

−− the sampling time is limited by the mechanical inertness 
of the micro-mirror DMD, i.e. the bigger the length of the 
wave, the larger and slower is the mirror,

−− the emissivity coefficient of aluminium used to make micro-
-mirrors also depends on the reflection angle of infrared 
radiation from the mirror surface (this effect does not occur 
for visible light) [1] .

The structure of a functional SLM for LWIR is feasible, 
yet it poses a technical problem. Due to the applied type of 
masking glass, it is impossible for any DMD matrices to be 
applied for far infrared dimensions, because to date there is 
no available information on the development of a DMD matrix 
for the range of 8–12 µm. 

The second solution is projecting the image directly on 
a detector shielded by perforated masks [2, 24]. For visible light 
a modulator has been made of a LCD matrix [21] yet due to 
the material such a solution may not be applied for far infra-
red. Hong-Chao Liu et al. [11] have executed reconstructions 
of image 51 × 51 pixels applying as SLM paper perforated dia-
phragm with dimensions of 145.35 mm × 145.35 mm having 
the radiation transmittance factor of 99 %.

Figure 1 presents the operational concept of the camera 
with the image shielded by masks of selected pixels. Each time 
the mask is changed, the total amount of radiation reaching the 
photodetector should be recorded. The sequence of shielding 
pixels by masks is a physical reflection of the mathematical 
measurement matrix. After execution of measurements for the 
whole sequence – the acquisition process is completed. Data 
collection is limited to selective distribution of radiation from 
selected pixels and saving the recorded amount of radiation 
reaching the detector. This is an important advantage in the 
event of devices with modest computational capacities, because 
image acquisition as such does not require a high computatio-
nal capacity, but merely saving the result sequence.

The scientific aim of the research was to review possibilities 
of applying SPC with CS for reconstruction of images in far 
infrared for observation and measurement purposes. Research 
conducted in diverse research centres [15, 19, 20] is focused on 
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optimising algorithms to achieve better image reconstruction. 
Given structural difficulties of the modulator, there are no 
known data available yet as to the development of an infrared 
measurement camera for the range of 8–12 µm. Owing to the 
emissivity coefficient that depends on the material, measure-
ment in LWIR has different specific features than observations 
in visible light. The research was not focused on the algorithm 
efficiency and the selection of masks, but instead particular 
attention was paid to the possibility of applying this solution 
for observations and measurements in LWIR. In the under-
taken study a standard image reconstruction algorithm was 
used (recovery of sparse signals via convex programming), and 
furthermore possibilities and limitations have been indicated 
for the application of this technique.

2. Materials and Methods 

It was assumed that there was no need of using a physical 
SPC for needs of research on image reconstruction. In the pre-
sent study the image acquisition stage was simulated in the 
MATLAB programme based on actual thermograms obtained 
from a matrix camera. The initial infrared image has been sam-
pled using a common Flir ThermaCAM SC640 measurement 
camera working in infrared and then it was mathematically 
processed into a signal similar as would have been obtained 
from SPC.

Considering that the number of measurements in CS is 
lower than the number of all pixels in the image, the problem 
of reconstruction is limited to solving an imprecise set of linear 
equations. Authors of the method [5] have established that 
for actual images that prevail in nature there are images, the 
signal components of which are rare. Consequently the authors 
have presented two conditions for the image to be reconstruc-
ted. The sampled signal has to have a rare nature of data 
occurrence or at least one should be compressible. This means 
that from among values that occur in a signal many should 
have insignificant values as compared to a lower amount of 

data with considerably higher values. The second condition is 
the in coherent measurement process [5]. This condition may 
be fulfilled thanks to appropriate selection of the matrix in 
a random way [20]. The concept of compressed sensing is based 
on a smaller number of measurements m than the size of signal 
n (number of all pixels). The number of significant components 
of signals is lower than the number of measurements.

	 s < m << n	 (1)

where: s – the number of significant components of signal, m 
– minimum number of measurements, n – the number of all 
components in the signal. 

Each measurement consists in determination of the signal 
strength f based on components of signal baseand components 
of signal xi

	 ∑ == n
i iixf 1 ψ 	 (2)

where: f – signal, Ψi – components signal base, xi – compo-
nents signal

The vague equation of the entire measurement sequence 
acquires the following matrix form:

	           y = Φf = ΦΨx =Ax 	 (3)

where: y – measurement vector (m × 1) is the matrix of measu-
rement results. In this case, it is a series of measurements of 
the radiation incident on the detector partially obscured by 
a modulator sequentially controlled by rows of the sampling 
matrix F, Ψ – signal base A – measuring matrix, x – studied 
image in the matrix form (n × 1). The Fig. 2 shows the CS 
method, where in X is located s-non zero values. 

Fig. 1. Rule of operation of a single pixel camera
Rys. 1. Zasada działania kamery jednopikselowej

Fig. 2. The concept of CS matrix calculus
Rys. 2. Koncepcja rachunku macierzowego CS

It was assumed that the studied signal has the nature of 
rare occurrence. From among an infinite number of solutions 
for a vague set of equations as a rule a solution is to be selec-
ted, for which the total of all unknown equations is the lowest. 
With this in mind use is made of minimisations of norm 1.

	  
	

(4)

A solution of this problem is constituted by optimising linear 
programming with polynomial complexity. Both to generate 
the measurement vector, measurement matrix and for needs 
of reconstruction use was made of a packet of 1 – Magic in 
the MATLAB environment [25]. Figure 3 presents a concept 
of the experiment.
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The analysed thermogram came from a measuring camera. 
Setting out of the temperature of the analysed object in micro-
bolometric matrix measuring cameras is only feasible once the 
emissivity coefficient has been determined. If the emissivity 
coefficient e is unknown, the thermogram does not present 
temperature distribution, but merely radiation distribution. 
For needs of the assimilated measurement use has been made 
of this type of distribution for e = 1. The determination of 
actual temperature was left as a secondary action, similarly as 
in standard matrix measurements. During a simulated measu-
rement the output value for a single measurement constituted 
a total of values of all unmasked pixels pursuant to formula 2. 
The entire assimilated measurement consisted of generating 
two matrices:

−− matrix of results [m × 1] (matrix of actual figures),
−− matrix of measurement matrices [m × n] (zero-one matrix),

where: m – number of measurements, n – number of pixels 
in image.

The matrix of measurement matrices was generated in a ran-
dom way independently for each measurement. The reconstruc-
ted image was then compared with the input thermogram.

Before reconstruction of the image, the result matrix was 
subjected to standardisation. To allow the reconstruction of 
actual radiation values total radiation was measured (all pixels 
unmasked) which was then used to set out the mean value for 
the whole thermogram. Figure 4 presents a diagram that illu-
strates the process of temperature measurement. 

Calibration was achieved by multiplying the reconstructed 
image by the mean value. The result is a distribution of the 
recorded infrared radiation. The value of total radiated power 
f was obtained by adding to the measurement sequence of 
the complementary aperture for another random aperture fx, 
coming from the measurement matrix, formula 5.

	 xx fff += 	 (5)

A synthesis of results from the selected and negated mask 
constitutes the total radiation of the image. Setting out of 
radiation temperature based on emissivity of the observed 
object is a general problem applicable to all types of cameras 
and was not covered by the subject of research. Consequently 

in the further part a comparison was carried out of radiation 
values of the reconstructed thermograms and not temperatures. 

3. Results and Discussion

The analysis was carried out on the basis of three reference 
images (Fig. 5). Thermogram 1 is an image of a copper plate, 
onto which two types of lacquer had been powder sprayed 
having different emissivity coefficients. The plate was next 
heated with a burner. Thermogram 2 is a view of forest under-
growth heated up by solar radiation, while thermogram 3 is an 
infrared view of a burning car. The measurement range was 
0–550 °C. Three analysed thermograms have a different struc-
ture, temperature scope [°C], CV (Coefficient of Variation), 
standard deviation s as well as the percentage of pixels that 
constitute edges delineated using the Canny filter.

Table 1 presents parameters of reference images after their 
standardisation (standardisation causes all dimensions for 
which the distance is counted with the same significance).

Thermograms in Figures 5, 7 have to be reconstructed at the 
resolution of 256 × 256 pixels. Reduced resolution affects the 
lower computational cost. For the SPD scanning this would 
require 65536 measurements. If CS is applied, 656 measure-
ments were assimilated in the shortest sequence, which comes 

Fig. 3. Conceptual diagram of the experiment
Rys. 3. Schemat koncepcyjny eksperymentu

Fig. 4. Diagram of measurement executed with a SPC camera with CS
Rys. 4. Schemat wykonania pomiaru kamerą SPC z CS
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Fig. 5. Result of reconstruction of a thermogram (256 × 256 pixels) on the Celsius scale for different values obtained by algorithm ℓ1 – Magic in 
the MATLAB environment. (a) Thermogram 1 with the use of 656 samples, (b) Thermogram 1 with the use of 6556 samples, (c) Thermogram 1 of 
reference image, (d) Thermogram 2 with the use of 656 samples, (e) Thermogram 2 with the use of 6556 samples, (f) Thermogram 2 of reference 
image, (g) Thermogram 3 with the use of 656 samples, (h) Thermogram 3 with the use of 6556 samples, (i) Thermogram 3 of reference image
Rys. 5. Wynik rekonstrukcji termogramu (256 × 256 pikseli) w skali Celsjusza dla różnych ilości pobranych wartości algorytmem ℓ1 – Magic w środowisku 
MATLAB. (a) Termogram 1 przy użyciu 656 próbek, (b) Termogram 1 przy użyciu 6556 próbek, (c) Termogram 1 obrazu referencyjnego, (d) Termogram 2 
przy użyciu 656 próbek, (e) Termogram 2 przy użyciu 6556 próbek, (f) Termogram 2 obrazu referencyjnego, (g) Termogram 3 przy użyciu 656 próbek, (h) 
Termogram 3 przy użyciu 6556 próbek, (i) Termogram 3 obrazu referencyjnego

Table 1. Characteristics of standardised thermograms
Tabela 1. Charakterystyka termogramów poddanych standaryzacji

n.o. s CV edge share [%]

Thermogram 1 1.2861∙10–6 21.4 1.7425

Thermogram 2 1.0121∙10–6 16.8 16.8212

Thermogram 3 1.4020∙10–5 171.8 6.2179

up to approximately 1 % as compared to scanning of all pixels. 
During the execution of measurement thermograms the main 
focus of interest was measuring radiation at the given point. 
Studies comprised the difference in radiation reconstruction 
in relation to the reference thermogram in the function of the 
number of samples. Figure 6a presents the dependence between 
the ratio of the number of samples and Pearson’s linear cor-
relation ra,b of reference image vectors f(a) and the vector of 
a reconstructed image f(b). The correlation was set out based 
on formula 6.
            	 xx fff += 	 (6)

Figure 6b presents the ratio of peak signal to noise PSNR 
expressed by formula 7.

	 	 (7)

MAX is the measurement resolution of the camera, MSE 
is the mean square error between the reference thermograms 
and reconstruction.

An increase of the number of samples leads to a non-linear 
improvement of the correlation ratio and enhancement of 
PSNR. Yet the enhancement rate differs for the three cases, 
and also depends on the image structure. Larger ranges of 
measured temperatures lead to an impairment of PSNR and 
better shape mapping.

Shape mapping is of importance in observation cameras. 
Figure 7 presents a temperature distribution with the use of 
isotherm, which reflect the accuracy of shape reconstruction. 
Those are isotherm for 1 % and 10 % of the maximum number 
of samples and reference images. Based on the low number of 
measurements it is possible to observe contours and the cor-
rect situation of the warmest and coolest points. At the level 
of 10 % the major part of image details may be observed.

The temperature gradient between isotherm for thermogram 
1 and 2 equalled to 1 °C and 10 °C for thermogram 3. A pro-
blem in the usage of CS is selecting the minimum number of 
measurements to reflect the original thermogram. Researchers 
Candes and Wakin [26] have proven that the minimum num-
ber of measurements m needs to fulfil the condition presented 
by formula 8.

	 m ≥ C · μ2(ϕ, ψ) · s · log(n) 	 (8)
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Fig. 6. Comparison of reconstruction 
to the reference image for three 
cases. (a) Dependence of correlation 
between the ratio of the number of 
obtained samples to all pixels in the 
image. (b) Dependence of PSNR of the 
ratio of obtained samples to all pixels 
in the image
Rys. 6. Porównanie rekonstrukcji 
do obrazu odniesienia dla trzech 
przypadków. (a) Zależność korelacji 
od stosunku liczby pobranych próbek 
do wszystkich pikseli w obrazie. 
(b) Zależność PSNR od stosunku liczby 
pobranych próbek do wszystkich pikseli 
w obrazie

Fig. 7. Shape mapping by temperature gradient [°C] for different numbers of samples in relation to the reference thermogram. (a) Reconstruction 
from 656 samples, spacing of isotherm 1 °C, (b) Reconstruction from 6556 samples spacing of isotherm 1 °C, (c) Reference thermogram 1,spacing 
of isotherm 1 °C, (d) Reconstruction from 656 samples spacing of isotherm 1 °C, (e) Reconstruction from 6556 samples spacing of isotherm 1 °C, 
(f) Reference thermogram 2, spacing of isotherm 1 °C, (g) Reconstruction from 656 samplesspacing of isotherm 10°C, (h) Reconstruction from 6556 
samples, spacing of isotherm 10 °C, (i) Reference thermogram 3, spacing of isotherm 10 °C
Rys. 7. Odwzorowanie kształtu gradientem temperatury [°C] dla różnych ilości próbek względem termogramu referencyjnego. (a) Rekonstrukcja z 656 próbek 
odstęp izoterm 1 °C, (b) Rekonstrukcja z 6556 próbek odstęp izoterm 1 °C, (c) Termogram 1 referencyjny odstęp izoterm 1 °C, (d) Rekonstrukcja z 656 próbek 
odstęp izoterm 1 °C, (e) Rekonstrukcja z 6556 próbek odstęp izoterm 1 °C, (f) Termogram 2 referencyjny odstęp izoterm 1 °C, (g) Rekonstrukcja z 656 próbek 
odstęp izoterm 10 °C, (h) Rekonstrukcja z 6556 próbek odstęp izoterm 10 °C, (i) Termogram 3 referencyjny odstęp izoterm 10 °C
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where: C – constant, m – coherence between sampling matrix 
f and signal base, s – number of significant signal components 
(is lower than the all components signal), n – number of all 
signal components. The coherence between the measurement 
base and the signal base is expressed by the highest correla-
tion of random base vectors between the signal base and the 
measurement base (formula 9):

	 ( ) jk
njk

n ψφψφµ ,, max
,1 ≤≤

⋅=  	 (9)

where: fs – components of the sampling matrix, y – compo-
nents signal base 

Two implications arise from the above presented formulas 
(8, 9). The first one is that it is necessary to determine in an 
arbitrary way the threshold value that delimits the subset of 
significant components from the set of all values. Secondly, 
setting out coherence as such requires familiarity with signal 
components a priori. Consequently the method of delimiting 
the minimum number of samples according to formula 8 may 
not be applied easily in practice because it requires familiarity 
with the number of significant signal components and cohe-
rence between bases prior to execution of the measurement. 
In such an event it is only possible to assume arbitrarily the 
minimum number of samples, which would guarantee the cor-
rect image reconstruction with sufficient likelihood. The value 
of measurement error may be determined only once the real 
infrared radiation distribution is known, which is not guaran-
teed by this method. 

Measurements using SPC with CS in far infrared ranges 
entail certain technological limitations in the spectrum aspect 
of the modulator structure. Another limitation, related to the 
method as such, is the significant uncertainty related to true 
reconstruction of temperature distribution. It is impossible to 
prove clearly the quality of enhancement of the thermograms 
reconstruction in the function of the number of used samples, 
because to a large extent this depends on the object of obse-
rvation. By increasing the number of samples it is possible to 
minimise the error, yet this is also connected with extending 
the measurement time and gives rise to a higher computatio-
nal cost.

4. Conclusions

Based on the implemented series of reconstructions for three 
different thermograms it has been found that increasing the 
number of samples approximates the correlation to one and 
increases the PSNR coefficient. The camera may be used to 
reconstruct a thermogram for observation purposes. At 1/100 
measurements in relation to the total number of pixels the 
correlation remained higher than 0.85. Measurements of elec-
tromagnetic radiation may also be carried out with the current 
reconstruction error. For the same number of samples, the dif-
ference of PSNR for two different images may exceed 30 dB 
and depends on the range of measured radiated power and 
image structure. For the analysed examples, at 1/100 measu-
rements in relation to the total pixel number, in the worst case 
PSNR remained higher than 20 dB. Apart from non-linear 
impact of the number of samples on the measurement error, 
a limitation in measurements of radiated power is constituted 
by the impact of the thermogram structure as such. Increasing 
the number of samples enhances mapping in a non-linear way, 
difficult to foresee. Larger ranges of measured temperatures 
cause impairment in PSNR and better contour mapping.
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Streszczenie: Obrazowanie kamerą jednopikselową z użyciem CS (compressed sensing) jest 
nową i obiecującą technologią. Za pomocą CS można rekonstruować obrazy w różnych zakresach 
widmowych zależnie od czułości spektralnej użytego detektora. W pracy wykonano rekonstrukcję 
obrazu w zakresie LWIR (Long-Wave Infrared) na podstawie termogramu z zasymulowanej kamery 
jednopikselowej. Do rekonstrukcji użyto CS. Na podstawie analizy przypadków stwierdzono, 
że metodę CS można wykorzystać do budowania kamer obserwacyjnych jednopikselowych na 
podczerwień. Możliwe jest również zastosowanie tego rozwiązania w kamerach pomiarowych. 
Aby wykonać pomiar temperatury radiacyjnej należy dokonać kalibracji wyników uzyskanych na 
drodze rekonstrukcji CS. W badaniu zaproponowano sposób kalibracji kamery pomiarowej na 
podczerwień oraz zbadano wpływ liczby pomiarów na jakość rekonstrukcji. Zrekonstruowane 
termogramy porównano z referencyjnymi obrazami promieniowania podczerwonego. Stwierdzono, 
że redukcja błędu rekonstrukcji nie jest wprost proporcjonalna do zwiększanej liczby pobieranych 
próbek. Na podstawie analizy przypadków zaobserwowano, że poza liczbą pobieranych próbek, 
istotnym czynnikiem mającym wpływającym na wierność rekonstrukcji jest struktura samego obrazu. 
Dowiedziono, że szacowanie błędu dla zrekonstruowanych termogramów nie może być oparte tylko 
na liczbie wykonywanych pomiarów. 

Słowa kluczowe: kamera jedno-pikselowa, oszczędne próbkowanie, pomiary w podczerwieni, kamera termowizyjna
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