PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Corona virus disease-2019 (COVID-19) is a pandemic caused by novel coronavirus. COVID-19 is spreading rapidly throughout the world. The gold standard for diagnosing COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR) test. However, the facility for RT-PCR test is limited, which causes early diagnosis of the disease difficult. Easily available modalities like X-ray can be used to detect specific symptoms associated with COVID-19. Pre-trained convolutional neural networks are widely used for computer-aided detection of diseases from smaller datasets. This paper investigates the effectiveness of multi-CNN, a combination of several pre-trained CNNs, for the automated detection of COVID-19 from X-ray images. The method uses a combination of features extracted from multi-CNN with correlation based feature selection (CFS) technique and Bayesnet classifier for the prediction of COVID-19. The method was tested using two public datasets and achieved promising results on both the datasets. In the first dataset consisting of 453 COVID-19 images and 497 non-COVID images, the method achieved an AUC of 0.963 and an accuracy of 91.16%. In the second dataset consisting of 71 COVID-19 images and 7 non-COVID images, the method achieved an AUC of 0.911 and an accuracy of 97.44%. The experiments performed in this study proved the effectiveness of pre-trained multi-CNN over single CNN in the detection of COVID-19.
Twórcy
  • Department of Computer Science and Engineering, College of Engineering Perumon, Kollam 691601, Kerala, India
  • Artificial Intelligence & Computer Vision Lab, Department of Computer Science, Cochin University of Science and Technology, Kochi 682022, Kerala, India
Bibliografia
  • [1] WHO. WHO situation report-108; 2020, Available from: http://www.who.int/292docs/default-source/coronaviruse/ situation-reports/29320200507covid-19-sitrep-108.pdf? sfvrsn=44cc8ed8_2. [Accessed 9 May 2020].
  • [2] Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of covid-19. J Pharm Anal 2020;10:102–8.
  • [3] Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, et al. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19. IEEE Rev Biomed Eng 2020. http://dx.doi.org/10.1109/rbme.2020.2987975.
  • [4] Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with covid-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020;20(4):425–34.
  • [5] Jacobi A, Chung M, Bernheim A, Eber C. Portable chest X-ray in coronavirus disease-19 (covid-19): a pictorial review. Clin Imaging 2020;64:35–42.
  • [6] Abraham B, Nair MS. Computer-aided grading of prostate cancer from MRI images using convolutional neural networks. J Intell Fuzzy Syst 2019;36(3):2015–24.
  • [7] Abraham B, Nair MS. Automated grading of prostate cancer using convolutional neural network and ordinal class classifier. Inform Med Unlocked 2019;17:100256.
  • [8] Abraham B, Nair MS. Computer-aided diagnosis of clinically significant prostate cancer from MRI images using sparse autoencoder and random forest classifier. Biocybern Biomed Eng 2018;38(3):733–44.
  • [9] Celik Y, Talo M, Yildirim O, Karabatak M, Acharya UR. Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images. Pattern Recognit Lett 2020;133:232–9.
  • [10] Talo M, Yildirim O, Baloglu UB, Aydin G, Acharya UR. Convolutional neural networks for multi-class brain disease detection using MRI images. Comput Med Imaging Graph 2019;78:101673.
  • [11] Doan M, Case M, Masic D, Hennig H, McQuin C, Caicedo J, et al. Label-free leukemia monitoring by computer vision. Cytometry A 2020;97(4):407–14.
  • [12] Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (covid-19) using X-ray images and deep convolutional neural networks; 2020, arXiv preprint arXiv:2003.10849.
  • [13] Castiglioni I, Ippolito D, Interlenghi M, Monti CB, Salvatore C, Schiaffino S, et al. Artificial intelligence applied on chest X-ray can aid in the diagnosis of covid-19 infection: a first experience from Lombardy, Italy. medRxiv 2020.
  • [14] Hemdan EE-D, Shouman MA, Karar ME. Covidx-net: a framework of deep learning classifiers to diagnose covid-19 in X-ray images; 2020, arXiv preprint arXiv:2003.11055.
  • [15] Panwar H, Gupta P, Siddiqui MK, Morales-Menendez R, Singh V. Application of deep learning for fast detection of covid-19 in X-rays using ncovnet. Chaos Solitons Fractals 2020;109944.
  • [16] Pereira RM, Bertolini D, Teixeira LO, Silla Jr CN, Costa YM. Covid-19 identification in chest X-ray images on flat and hierarchical classification scenarios; 2020, arXiv preprint arXiv:2004.05835.
  • [17] Toraman S, Alakus TB, Türkoglu I. Convolutional capsnet: A novel artificial neural network approach to detect covid-19 disease from X-ray images using capsule networks. Chaos Solitons Fractals 2020;110122.
  • [18] He X, Yang X, Zhang S, Zhao J, Zhang Y, Xing E, et al. Sample-efficient deep learning for covid-19 diagnosis based on CT scans. medRxiv 2020.
  • [19] Mei X, Lee H-C, Diao K-y, Huang M, Lin B, Liu C, et al. Artificial intelligence-enabled rapid diagnosis of patients with covid-19. Nat Med 2020;1–5.
  • [20] Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, et al. Lung infection quantification of covid-19 in CT images with deep learning; 2020, arXiv preprint arXiv:2003.04655.
  • [21] Chen X, Yao L, Zhang Y. Residual attention u-net for automated multi-class segmentation of covid-19 chest CT images; 2020, arXiv preprint arXiv:2004.05645.
  • [22] Chen X, Yao L, Zhou T, Dong J, Zhang Y. Momentum contrastive learning for few-shot covid-19 diagnosis from chest CT images; 2020, arXiv preprint arXiv:2006.13276.
  • [23] Fan D-P, Zhou T, Ji G-P, Zhou Y, Chen G, Fu H, et al. Inf-net: automatic covid-19 lung infection segmentation from CT images. IEEE Trans Med Imaging 2020.
  • [24] Cohen JP, Morrison P, Dao L. Covid-19 image data collection; 2020, arXiv 2003.11597. https://github.com/ieee8023/covid-chestxray-dataset.
  • [25] Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172(5):1122–31.
  • [26] Mooney P. Pneumonia X rays; 2018, Available from: https://www.kaggle.com/paultimothymooney/ chest-xray-pneumonia. [Accessed 14 July 2020].
  • [27] Dadario AMV. Covid-19 X rays; 2020. http://dx.doi.org/10.34740/KAGGLE/DSV/1019469, Available from: https://www.kaggle.com/dsv/1019469. [Accessed 26 April 2020].
  • [28] Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 248–55.
  • [29] Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018;9(4):611–29.
  • [30] Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med 2019;95:64–81.
  • [31] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017. p. 4700–8.
  • [32] Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-first AAAI Conference on Artificial Intelligence; 2017.
  • [33] Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient convolutional neural network for mobile devices. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 6848–56.
  • [34] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 770–8.
  • [35] Redmon J, Farhadi A. Yolov3: an incremental improvement; 2018, arXiv preprint arXiv:1804.02767.
  • [36] Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. Mobilenetv2: inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 4510–20.
  • [37] Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 8697–710.
  • [38] Chollet F, Xception:. Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017. p. 1251–8.
  • [39] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014, arXiv preprint arXiv:1409.1556.
  • [40] Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 MB model size; 2016, arXiv preprint arXiv:1602.07360.
  • [41] Hall MA. Correlation-based feature subset selection for machine learning. Thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy at the University of Waikato; 1998.
  • [42] Gutlein M, Frank E, Hall M, Karwath A. Large-scale attribute selection using wrappers. 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE; 2009. p. 332–9.
  • [43] Bouckaert RR. Bayesian network classifiers in weka for version 3-5-7. Artif Intell Tools 2008;11(3):369–87.
  • [44] Zhang J, Xie Y, Li Y, Shen C, Xia Y. Covid-19 screening on chest X-ray images using deep learning based anomaly detection; 2020, arXiv preprint arXiv:2003.12338.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f085f002-2c0c-4f32-aaa5-8bc7a83f0712
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.