Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In clinical research, one of the key problems is to estimate the effect of the best treatment among the given k treatments in two-stage adaptive design. Suppose the effects of two treatments have normal distributions with means θ1 and θ2, respectively, and common known variance σ2. In the first stage, random samples of size n1 with means X1 and X2 are chosen from the two populations. Then the population with the larger (or smaller) sample mean XM is selected, and a random sample of size n2 with mean YM is chosen from this population in the second stage of design. Our aim is to estimate the mean θM (or θJ) of the selected population based on XM and YM in two-stage adaptive design under the reflected normal loss function. We obtain minimax estimators of θM and θJ, and then provide some sufficient conditions for the inadmissibility of estimators of θM and θJ. Theoretical results are augmented with a simulation study as well as a real data application.
Czasopismo
Rocznik
Tom
Strony
361--383
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
- Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
- Department of Statistics, Allameh Tabataba’i University, Tehran, Iran
Bibliografia
- [1] M. Arshad and N. Misra, Estimation after selection from exponential populations with unequal scale parameters, Statist. Papers 57 (3) (2016), pp. 605-621.
- [2] D. Basu, A note on the theory of unbiased estimation, Ann. Math. Statist. 26 (1955), pp. 345-348.
- [3] J. F. Brewster and J. V. Zidek, Improving on equivariant estimators, Ann. Statist. 2 (1974), pp. 21-38.
- [4] A. Cohen and H. B. Sackrowitz, Estimating the mean of the selected population, in: Statistical Decision Theory and Related Topics III, Vol. 1, S. S. Gupta and J. O. Berger (Eds.), Academic Press, New York 1982, pp. 247-270.
- [5] R. C. Dahiya, Estimation of the mean of the selected population, J. Amer. Statist. Assoc. 69 (1974), pp. 226-230.
- [6] J. D. Gibbons, I. Olkin, and M. Sobel, Selecting and Ordering Populations: A New Statistical Methodology, Wiley, New York 1977.
- [7] H.-K. Hsieh, On estimating the mean of the selected population with unknown variance, Comm. Statist. Theory Methods 10 (18) (1981), pp. 1869-1878.
- [8] S. Kumar, A. K. Mahapatra, and P. Vellaisamy, Reliability estimation of the selected exponential populations, Statist. Probab. Lett. 79 (11) (2009), pp. 1372-1377.
- [9] E. L. Lehmann, A general concept of unbiasedness, Ann. Math. Statistics 22 (1951), pp. 587-592.
- [10] R. V. León and C. J. Wu, A theory of performance measures in parameter design, Statist. Sinica 2 (2) (1992), pp. 335-358.
- [11] X. Lu, A. Sun, and S. S. Wu, On estimating the mean of the selected normal population in two-stage adaptive designs, J. Statist. Plann. Inference 143 (7) (2013), pp. 1215-1220.
- [12] N. Misra and E. C. van der Meulen, On estimating the mean of the selected normal population under the LINEX loss function, Metrika 58 (2) (2003), pp. 173-183.
- [13] N. Misra, E. C. van der Meulen, and K. Vanden Branden, On estimating the scale parameter of the selected gamma population under the scale invariant squared error loss function, J. Comput. Appl. Math. 186 (1) (2006), pp. 268-282.
- [14] N. Misra, E. C. van der Meulen, and K. Vanden Branden, On some inadmissibility results for the scale parameters of selected gamma populations, J. Statist. Plann. Inference 136 (7) (2006), pp. 2340-2351.
- [15] M. Naghizadeh Qomi, N. Nematollahi, and A. Parsian, Estimation after selection under reflected normal loss function, Comm. Statist. Theory Methods 41 (6) (2012), pp. 1040-1051.
- [16] N. Nematollahi, Admissible and minimax estimation of the parameter of the selected Pareto population under squared log error loss function, Statist. Papers 58 (2) (2017), pp. 319-339.
- [17] N. Nematollahi and F. Motamed-Shariati, Estimation of the scale parameter of the selected gamma population under the entropy loss function, Comm. Statist. Theory Methods 38 (1-2) (2009), pp. 208-221.
- [18] N. Nematollahi and F. Motamed-Shariati, Estimation of the parameter of the selected uniform population under the entropy loss function, J. Statist. Plann. Inference 142 (7) (2012), pp. 2190-2202.
- [19] A. Parsian and N. Sanjari Farsipour, Estimation of the mean of the selected population under asymmetric loss function, Metrika 50 (2) (1999), pp. 89-107.
- [20] D. Rubinstein, Estimation of the reliability of a system in development, Rep. R-61-ELC-1, Tech. Info. Service, General Electric Co., 1961.
- [21] D. Rubinstein, Estimation of failure rates in a dynamic reliability program, Rep. 65- RGO-7, Tech. Info. Service, General Electric Co., 1965.
- [22] H. B. Sackrowitz and E. Samuel-Cahn, Evaluating the chosen population: A Bayes and minimax approach, in: Adaptive Statistical Procedures and Related Topics, J. van Ryzin (Ed.), IMS Lecture Notes-Monograph Series, Vol. 8, Hayward, CA, 1987, pp. 368-395.
- [23] A. R. Sampson and M. W. Sill, Drop-the-losers design: Normal case, Biom. J. 47 (3) (2005), pp. 257-268.
- [24] K. Sarkadi, Estimation after selection, Studia Sci. Math. Hungar. 2 (1967), pp. 341-350.
- [25] D. J. Schaid, S. Wieand, and T. M. Therneau, Optimal two-stage screening design for survival comparisons, Biometrika 77 (3) (1990), pp. 507-513.
- [26] F. A. Spiring, The reflected normal loss function, Canad. J. Statist. 21 (3) (1993), pp. 321-330.
- [27] F. A. Spiring and A. S. Yeung, A general class of loss functions with industrial applications, J. Qual. Technol. (30) (1998), pp. 152-162.
- [28] N. Stallard and T. Friede, A group-sequential design for clinical trials with treatment selection, Stat. Med. 27 (29) (2008), pp. 6209-6227.
- [29] P. F. Thall, R. Simon, and S. S. Ellenberg, Two-stage selection and testing designs for comparative clinical trials, Biometrika 75 (2) (1988), pp. 303-310.
- [30] P. F. Thall, R. Simon, and S. S. Ellenberg, A two-stage design for choosing among several experimental treatments and a control in clinical trials, Biometrics 45 (2) (1989), pp. 537-547.
- [31] M. Tribus and G. Szonyi, An alternate view of the Taguchi approach, Quality Progress, May 1989, pp. 46-52.
- [32] P. Vellaisamy, Inadmissibility results for the selected scale parameters, Ann. Statist. 20 (4) (1992), pp. 2183-2191.
- [33] P. Vellaisamy, A note on the estimation of the selected scale parameters, J. Statist. Plann. Inference 55 (1) (1996), pp. 39-46.
- [34] P. Vellaisamy and A. P. Punnen, Improved estimators for the selected location parameters, Statist. Papers 43 (2) (2002), pp. 291-299.
- [35] J. H. Venter, Estimation of the mean of the selected population, Comm. Statist. Theory Methods 17 (3) (1988), pp. 791-805.
- [36] S. S. Wu, W. Wang, and M. C. K. Yang, Interval estimation for drop-the-losers designs, Biometrika 97 (2) (2005), pp. 405-418.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f085a7dd-2697-4100-87f4-5a3385be66cc