PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Diesel Fuel Temperature on the Nitrogen Oxides Emission from a Compression-Ignition Engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research aimed at analysing the influence of the diesel oil temperature on the NOx emission level. The tests were carried out on a test stand equipped with a 9.5 kW multi-fuel compression-ignition engine. The setup constitutes an experimental cogeneration unit discharging the produced energy into the power grid. The measurements were carried out under the D1 test procedure provided by ISO 8178–4 for testing engines operating at a constant speed. As a result of statistical analysis of the results obtained, significant differences were found in the u specific values of the nitrogen oxides emission gained for particular phases of D1 tests, when the engine was fed with diesel fuel of different temperatures. The results obtained confirmed the possibility of limiting the specific emission of NOx only when the engine is running at 75% of its nominal torque. An increase in the NOx emissions was recorded for the remaining loads.
Rocznik
Strony
164--170
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-637 Poznań, Poland
  • Department of Biomass processing Technologies, Institute of Technology and Life Sciences, ul. Biskupińska 67, 60-463 Poznań, Poland
  • Department of Biomass processing Technologies, Institute of Technology and Life Sciences, ul. Biskupińska 67, 60-463 Poznań, Poland
  • Wroclaw University of Economics and Business, Department of Agricultural engineering and Quality Analysis, ul. Komandorska 118/120, 53-345 Wrocław, Poland
  • Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-637 Poznań, Poland
Bibliografia
  • 1. Blakeman P.G., Chiffey A.F., Phillips P.R., Twigg M.V., Walker. A.P. 2003. Developments in Diesel Emission Aftertreatment Technology. SAE Technical Papers. https://doi.org/10.4271/2003–01–3753.
  • 2. Colliou T., Lavy J., Martin B., Chandès K., Pichon G., Pierron L. 2004. Coupling of a NOx Trap and a CDPF for Emission Reduction of a 6-Cylinder HD Engine. SAE Technical Papers, no. 724. https://doi.org/10.4271/2004–01–1945.
  • 3. Conway R., Chatterjee S., Beavan A., Lavenius M., Viswanathan S., Walker A., Rawson S. 2005. Combined SCR and DPF Technology for Heavy Duty Diesel Retrofit. SAE Technical Papers, no. 724. https://doi.org/10.4271/2005–01–1862.
  • 4. Czerwinski, J., Zimmerli Y., Meyer M., Kasper M. 2008. A Modern HD-Diesel Engine with Rapeseed Oil, DPF and SCR. SAE Technical Papers 2008 (724): 776–90. https://doi.org/10.4271/2008–01–1382.
  • 5. Gracz W. 2018. Emisja gazów spalinowych i sprawność energetyczna wielopaliwowego agregatu kogeneracyjnego w biogazowniach do 40 kW (in Polish), Ph.D. Thesis. Instytut TechnologicznoPrzyrodniczy, Falenty.
  • 6. Gysel N., Karavalakis G., Durbin T., Schmitz D., Cho A. 2014. Emissions and Redox Activity of Biodiesel Blends Obtained from Different Feedstocks from a Heavy-Duty Vehicle Equipped with DPF/SCR Aftertreatment and a Heavy-Duty Vehicle without Control Aftertreatment. SAE Technical Papers. https://doi.org/10.4271/2014–01–1400.
  • 7. Hochhauser A.M. 2009. Review of Prior Studies of Fuel Effects on Vehicle Emissions. SAE Technical Papers 2 (1): 541–67. https://doi.org/10.4271/2009–01–1181.
  • 8. Hosoya M., Kawada Y., Sato S., Shimoda M. 2007. The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine. SAE Technical Papers 2007 (724). https://doi.org/10.4271/2007–01–1576.
  • 9. Hountalas, D.T., Mavropoulos G.C., Zannis T.C., Mamalis S.D. 2006. Use of Water Emulsion and Intake Water Injection as NOx Reduction Techniques for Heavy Duty Diesel Engines. SAE Technical Papers 2006 (724). https://doi.org/10.4271/2006–01–1414.
  • 10. Kawano D., Ishii H., Goto Y., Noda A., and Aoyagi Y. 2006. Application of Biodiesel Fuel to Modern Diesel Engine. SAE Technical Papers, no. 724. https://doi.org/10.4271/2006–01–0233.
  • 11. Kleinová, A., Vailing I., Lábaj J., Mikulec J., Cvengroš J. 2011. Vegetable Oils and Animal Fats as Alternative Fuels for Diesel Engines with Dual Fuel Operation. Fuel Processing Technology. https://doi.org/10.1016/j.fuproc.2011.05.018.
  • 12. Kono N., Kobayashi Y., Takeda H. 2005. Fuel Effects on Emissions from Diesel Vehicles Equipped with Advanced Aftertreatment Devices. SAE Technical Papers, no. 724. https://doi.org/10.4271/2005–01–3700.
  • 13. Kouremenos D. A., Hountalas D.T., Binder K.B. 2001. The Effect of EGR on the Performance and Pollutant Emissions of Heavy Duty Diesel Engines Using Constant and Variable AFR. SAE Technical Papers 2001 (724). https://doi.org/10.4271/2001–01–0198.
  • 14. Mizushima N., Sato S., Kawano D., Saito A., Takada Y.. 2012. A Study on NOx Emission Characteristics When Using Biomass-Derived Diesel Alternative Fuels. SAE International Journal of Fuels and Lubricants 5 (2): 892–99. https://doi.org/10.4271/2012–01–1316.
  • 15. Ohashi N., Nakatani K., Asanuma T., Fukuma T., Matsubara H., Sobue Y., Watanabe M.. 2008. Development of Next-Generation NOx Reduction System for Diesel Exhaust Emission. SAE Technical Papers 2008 (724). https://doi.org/10.4271/2008–01–0065.
  • 16. Okamoto K., Kohakura M., Kaneko T., Fukuda K., Furui K., Okada M., Tsuchihashi K., et al. 2010. Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems. SAE Technical Papers. https://doi.org/10.4271/2010–01–1292.
  • 17. Parthiban E., Jain A.. 2019. Development of Diesel Particulate NOx Reduction DPNR System for Simultaneous Reduction of PM and NOx in Diesel Engines. SAE International 1, 3–9. https://doi.org/10.4271/2019–28–2554.Abstract.
  • 18. Piaseczny L., Władyka W. 2008. Effects of the thermal activation of fuel on energy parameters and toxicity of combustion gases in the marine diesel engine; Journal of Polish Cimac, Vol 3, No 1.
  • 19. Pielecha I. 2001. Termodynamiczne aspekty koncepcji obniżania emisji tlenków azotu w silnikach wysokoprężnych (in Polish); Journal of Kones, Combustion Engines, Vol 8, No 3–4.
  • 20. Ranjith V.V., Thanikaikarasan S. 2019. Prediction of Exhaust Gas Emission Characteristics Using Neem Oil Blended Bio-Diesel in Diesel Engine. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2019.07.706.
  • 21. Saito S., Shinozaki R., Suzuki A., Jyoutaki H., Takeda Y.. 2003. Development of Urea-SCR System for Commercial Vehicle – Basic Characteristics and Improvement of NOx Conversion at Low Load Operation. SAE Technical Papers, no. 724. https://doi.org/10.4271/2003–01–3248.
  • 22. Timothy J. 2014. Vehicular Emissions in Review. SAE International Journal of Engines 7 (3). https://doi.org/10.4271/2014–01–1491.
  • 23. Tsukamoto Y., Nishioka H., Imai D., Sobue Y., Takagi N., Tanaka T., Hamaguchi T.. 2012. Development of New Concept Catalyst for Low CO2 Emission Diesel Engine Using NOx Adsorption at Low Temperatures. SAE Technical Papers. https://doi.org/10.4271/2012–01–0370.
  • 24. Tsumagari I., Hirabayashi H., Takenaka Y., Hosoya M., Shimoda M.. 2006. Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine. SAE Technical Papers, no. 724. https://doi.org/10.4271/2006–01–0211.
  • 25. Uekusa T., Enoki K., Fujita T., Tanaka Y., Shibuya H., Nakada T.. 2003. A New NOx Reduction Catalyst System for Diesel Engine with High Sulfur Tolerance. SAE Technical Papers, no. 724. https://doi.org/10.4271/2003–01–3241.
  • 26. Veltman M. K.,. Karra P.K, Kong S.C. 2009. Effects of Biodiesel Blends on Emissions in Low Temperature Diesel Combustion. SAE Technical Papers. https://doi.org/10.4271/2009–01–0485.
  • 27. Wu Y., Ferns J., Li H., Andrews G. 2017. Investigation of Combustion and Emission Performance of Hydrogenated Vegetable Oil (HVO) Diesel. SAE International Journal of Fuels and Lubricants 10 (3). https://doi.org/10.4271/2017–01–2400.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f084a737-e31a-46ac-b728-17b166d03584
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.