PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the possibility of using the singular value decomposition in image compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In today’s highly computerized world, data compression is a key issue to minimize the costs associated with data storage and transfer. In 2019, more than 70% of the data sent over the network were images. This paper analyses the feasibility of using the SVD algorithm in image compression and shows that it improves the efficiency of JPEG and JPEG2000 compression. Image matrices were decomposed using the SVD algorithm before compression. It has also been shown that as the image dimensions increase, the fraction of eigenvalues that must be used to reconstruct the image in good quality decreases. The study was carried out on a large and diverse set of images, more than 2500 images were examined. The results were analyzed based on criteria typical for the evaluation of numerical algorithms operating on matrices and image compression: compression ratio, size of compressed file, MSE, number of bad pixels, complexity, numerical stability, easiness of implementation.
Rocznik
Strony
53--67
Opis fizyczny
Bibliogr. 40 poz., fig., tab.
Twórcy
  • Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland
  • University of Maria Curie-Skłodowska, Faculty of Biology and Biotechnology, Institute of Biological Sciences
Bibliografia
  • [1] Anutam, & Rajni. (2014). Comparative Analysis of Filters and Wavelet Based Thresholding Methods for Image Denoising. Computer Science & Amp; Information Technology (CS &Amp; IT ) (pp. 137–148). https://doi.org/10.5121/csit.2014.4515
  • [2] Arps, R., & Truong, T. (1994). Comparison of international standards for lossless still image compression. Proceedings of the IEEE, 82(6), 889–899. https://doi.org/10.1109/5.286193
  • [3] Bovik, A. C. (2009). The Essential Guide to Image Processing (1st ed.). Academic Press.
  • [4] Britanak, V., Yip, P. C., & Rao, K. (2007). CHAPTER 4 – Fast DCT/DST Algorithms. Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations (pp. 73–140). Academic Press. https://doi.org/10.1016/b978-012373624-6/50006-0
  • [5] Cao, L. (2006). SVD applied to digital image processing. Division of Computing Studies, Arizona State University Polytechnic Campus.
  • [6] Chen, Y., Mukherjee, D., Han, J., Grange, A., Xu, Y., Parker, S., Chen, C., Su, H., Joshi, U., Chiang, C. H., Wang, Y., Wilkins, P., Bankoski, J., Trudeau, L., Egge, N., Valin, J. M., Davies, T., Midtskogen, S., Norkin, A., de Rivaz, P., Design, A., & Liu, Z. (2020). An Overview of Coding Tools in AV1: the First Video Codec from the Alliance for Open Media. APSIPA Transactions on Signal and Information Processing, 9(1), e6. https://doi.org/10.1017/atsip.2020.2
  • [7] Compton, E. A., & Ernstberger, S. L. (2020). Singular Value Decomposition: Applications to Image Processing. Lagrange College. Journal of Undergraduate Research, 17, 99–105.
  • [8] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2005). Wprowadzenie do algorytmów. Wydawnictwo Naukowe PWN.
  • [9] Davies, E. R. (2017). Computer Vision: Principles, Algorithms, Applications, Learning. Elsevier Gezondheidszorg.
  • [10] Dhawan, S. (2011). A Review of Image Compression and Comparison of its Algorithms. https://www.semanticscholar.org/paper/A-Review-of-Image-Compression-and-Comparison-of-its-Dhawan/034dcf50d99bbd9870c5c2e67201f6d792f96a5f
  • [11] Dumka, A., Ashok, A., Verma, P., & Verma, P. (2020). Advanced Digital Image Processing and Its Applications in Big Data (1st ed.). CRC Press.
  • [12] Gandhi, T., Patel, H., & Prajapati, D. (2015). Image Compression Using Fractal: Image compression based upon the self-similarities present in the image. LAP LAMBERT Academic Publishing.
  • [13] Gong, L., Deng, C., Pan, S., & Zhou, N. (2018). Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform. Optics &Amp; Laser Technology, 103, 48–58. https://doi.org/10.1016/j.optlastec.2018.01.007
  • [14] Hoffman, R. (1997). Data Compression in Digital Systems. Springer Publishing.
  • [15] Hoffman, R. (2012). Data Compression in Digital Systems. Springer Publishing.
  • [16] Jackson, D., & Hannah, S. (1993). Comparative analysis of image compression techniques. 1993 (25th) Southeastern Symposium on System Theory (pp. 513–517). IEEE. https://doi.org/10.1109/ssst.1993.522833
  • [17] Jankowska, J., & Jankowski, M. (1988). Przegląd metod i algorytmów numerycznych. Wydawnictwa Naukowo-Techniczne.
  • [18] Jinchuang, Z., Yan, T., & Wenli, F. (2009). Research of image compression based on Wireless visual sensor networks. 4th International Conference on Computer Science & Education (pp. 353–356). IEEE. https://doi.org/10.1109/iccse.2009.5228430
  • [19] Karwowski, D. (2019). Zrozumieć kompresję obrazu: podstawy technik kodowania stratnego oraz bezstratnego obrazów. Damian Karwowski.
  • [20] Kostrikin, A. I. (2004). Wstęp do algebry cz. 1 i cz. 2 Podstawy algebry. Wydawnictwo Naukowe PWN.
  • [21] Lu, Z., & Guo, S. (2016). Lossless Information Hiding in Images (1st ed.). Syngress.
  • [22] Mammeri, A., Hadjou, B., & Khoumsi, A. (2012). A Survey of Image Compression Algorithms for Visual Sensor Networks. International Scholarly Research Notices, 2012, 760320. https://doi.org/10.5402/2012/760320
  • [23] Miano, J. (1999). Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP. Addison-Wesley Professional.
  • [24] Murray, J. D., & VanRyper, W. (1996). Encyclopedia of Graphics File Formats. O’Reilly & Associates.
  • [25] Nasri, M., Helali, A., Sghaier, H., & Maaref, H. (2010). Energy-efficient wavelet image compression in Wireless Sensor Network. 2010 International Conference on Wireless and Ubiquitous Systems (pp. 1–7). IEEE. https://doi.org/10.1109/icwus.2010.5670430
  • [26] Nixon, M., & Aguado, A. (2019). Feature Extraction and Image Processing for Computer Vision (4th ed.). Academic Press.
  • [27] Parekh, D. (2021, April 25). Image Compression Standards | Digital Image Processing [Video file]. YouTube. https://www.youtube.com/watch?v=6IuKH7IGspU
  • [28] Pratt, W., Kane, J., & Andrews, H. (1969). Hadamard transform image coding. Proceedings of the IEEE, 57(1), 58–68. https://doi.org/10.1109/proc.1969.6869
  • [29] Pu, I. M. (2005). Fundamental Data Compression (1st ed.). Butterworth-Heinemann.
  • [30] Salomon, D., Motta, G., & Bryant, D. (2007). Data Compression: The Complete Reference. Springer Publishing.
  • [31] Sayood, K. (2002). Lossless Compression Handbook. Elsevier Gezondheidszorg.
  • [32] Shih, C. W., Chu, H. C., Chen, Y. M., & Wen, C. C. (2012). The effectiveness of image features based on fractal image coding for image annotation. Expert Systems With Applications, 39(17), 12897–12904. https://doi.org/10.1016/j.eswa.2012.05.003
  • [33] Short, M. N., Manohar, M., & Tilton, J. C. (1994). Planning/Scheduling Techniques for VQ-Based Image Compression. Science Information Management and Data Compression Workshop. 1994 Science Information Management and Data Compression Workshop (pp. 95–104). US Government.
  • [34] Shukla, K. K., & Prasad, M. V. (2011). Lossy Image Compression: Domain Decomposition-Based Algorithms. Springer Publishing.
  • [35] Stewart, G. W. (2001). Matrix Algorithms: Volume 2, Eigensystems (1st ed.). SIAM: Society for Industrial and Applied Mathematics.
  • [36] Swathi, H. R., Sohini, S., Surbhi, & Gopichand, G. (2017). Image compression using singular value decomposition. IOP Conference Series: Materials Science and Engineering, 263, 042082. https://doi.org/10.1088/1757-899x/263/4/042082
  • [37] Tanwar, S., Ramani, T., & Tyagi, S. (2018). Dimensionality Reduction Using PCA and SVD in Big Data: A Comparative Case Study. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (pp. 116–125). Springer. https://doi.org/10.1007/978-3-319-73712-6_12
  • [38] Wayner, P. (1999). Compression Algorithms for Real Programmers. Elsevier Gezondheidszorg.
  • [39] What’s the difference between ‘visually lossless’ and real lossless and what does this mean for future encodes? (2019, May 18). Video Production Stack Exchange. Retrieved May 2022 from https://video.stackexchange.com/questions/27656/whats-the-difference-between-visually-lossless-and-real-lossless-and-what-doe
  • [40] Xiao, F., Zhang, P., Sun, L. J., Wang, J., & Wang, R. C. (2011). Research on image compression and transmission mechanism for wireless multimedia sensor networks. 2011 International Conference on Electrical and Control Engineering (pp. 788–791). IEEE. https://doi.org/10.1109/iceceng.2011.6057601
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f084a737-2bde-4082-9941-f0a9e7628abd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.