PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dye photosensitizers and their influence on DSSC efficiency : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Substancje sensybilizujące i ich wpływ na sprawność barwnikowych ogniw słonecznych (DSSC) : przegląd
Języki publikacji
EN
Abstrakty
EN
Since early 1990s dye-sensitized solar cells (DSSC) has been developed by many research groups all over the World. This paper presents a review of researches focusing on photosensitizer influence on DSSC efficiency. Variety of dye substance has been analyzed. The highest efficiency around 11.2% has been noted for ruthenium-based DSSC devices. Natural dyes allowed to reach 4.6%. The most metal-free organic dyes resulted in efficiency ranged from 5% to 9%, however, some of them (e.g. Y123) allowed to obtain devices with efficiencies equal to 10.3%. Co-sensitization is the new approach which results in efficiencies up to 14.3%.
PL
Od początku lat 90 XX wieku ogniwa barwnikowe przyciągają uwagę naukowców na całym świecie. Praca ta poświęcona jest przeglądowi badań dotyczących wpływowi substancji sensybilizujących na sprawność barwnikowych ogniw słonecznych (DSSC). Największą sprawność uzyskują ogniwa sensybilizowane barwnikami na bazie rutenu, podczas gdy barwniki naturalne pozwalają na pracę z wydajnością 4,6%. Sprawność konwersji energii ogniw uczulanych barwnikami organicznymi wynosi 5-9%, jednakże niektóre z nich, np. Y123 pozwalają na uzyskanie wydajności rzędu 10,3%. Zastosowanie kilku barwników do sensybilizacji jest nowym podejściem, które przekłada się na wartości sprawności nawet do 14,3%.
Rocznik
Strony
86--90
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Institute of Renewable Energy Engineering, Lublin, Poland
Bibliografia
  • [1] Adedokun O., Titilope K., Awodugba A.O.: Review on natural dye-sensitized solar cells review on natural dye-sensitized solar cells (DSSCs). International Journal of Engineering Technologies 2/2016, 34–41, [DOI: 10.19072/ijet.96456].
  • [2] Adel R., Abdallah T., Moustafa Y.M., Al-sabagh A.M., Talaat, H.: Effect of polymer electrolyte on the performance of natural dye sensitized solar cells. Superlattices and Microstructures 86/2015, 62–67, [DOI: 10.1016/j.spmi.2015.07.024].
  • [3] Ahmad S., Guillén E., Kavan L., Grätzel M., Nazeeruddin M.K.: Metal free sensitizer and catalyst for dye sensitized solar cells. Energy & Environmental Science 6/2013, 3439–3466, [DOI: 10.1039/C3EE41888J].
  • [4] Ayalew W.A., Ayele D.W.: Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. Journal of Science: Advanced Materials and Devices 1/2016, 488–494, [DOI: 10.1016/j.jsamd.2016.10.003].
  • [5] Bakr N., Ali A., Jassim S., Hassoon K.: Effect of N719 Dye Concentration on the Conversion Efficiency of Dye Sensitized Solar Cells. ZANCO Journal of Pure and Applied Sciences 29/2017, 274–280 [DOI: 10.21271/ZJPAS.29.s4.31].
  • [6] Bessho T., Constable E.C., Graetzel M., Redondo A.H., Housecroft C.E., Kylberg W., Nazeeruddin M.K., Neuburgerb M., Schaffner S.: An element of surprise—efficient copper-functionalized dye-sensitized solar cells. Chemical Communications 32/2008, 3717–3719, [ DOI: 10.1039/B808491B].
  • [7] Blaschke T., Biberacher M., Gadocha S., Schardinger I.: ‗Energy landscapes‘: Meeting energy demands and human aspirations. Biomass and Bioenergy 55/ 2013, 3–16, [DOI: 10.1016/j.biombioe.2012.11.022].
  • [8] Calogero G., Yum J.-H., Sinopoli A., Di Marco G., Gratzel M., Nazeeruddin M.K.: Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy 86/2012, 1563–1575, [DOI: 10.1016/j.solener.2012.02.018].
  • [9] Chang H., Lo Y.-J.: Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy 84/2010, 1833–1837, [DOI: 10.1016/j.solener.2010.07.009].
  • [10] Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics 45/2006, 24–28, [DOI: 10.1143/JJAP.45.L638].
  • [11] De Angelis F., Fantacci S., Mosconi E., Nazeeruddin M.K., Grätzel M.: Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO2 in Dye-Sensitized Solar Cell Models. The Journal of Physical Chemistry C 115/211, 8825–8831, [DOI: 10.1021/jp111949a].
  • [12] Dobrzański L.A., Szindler M.M., Szindler M., Dudek A., Krawiec K.: The influence of natural and synthetic dyes on the absorbance of nanocrystalline TiO2 used in dye sensitized solar cells. Journal of Achievements in Materials and Manufacturing Engineering 69/2015, 53–58.
  • [13] Durrant J.R., Haque S.A., Palomares E.: Towards Optimisation of Electron Transfer Processes in Dye Sensitised Solar Cells. Coordination Chemistry Reviews 248/2004, 1247–1257, [DOI: 10.1016/j.ccr.2004.03.014].
  • [14] Funaki T., Yanagida M., Onozawa-Komatsuzaki N., Kawanishi Y., Kasuga K.,, Sugihara H.: A 2-quinolinecarboxylate-substituted ruthenium(II) complex as a new type of sensitizer for dye-sensitized solar cells. Inorganica Chimica Acta 362/2009, 2519–2522, [DOI: 10.1016/j.ica.2008.10.019].
  • [15] Ghann W., Kang H., Sheikh T., Yadav S., Chavez-Gil T., Nesbitt F., Uddin J.: Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell. Scientific Reports 7/2017, 1–12, [DOI: 10.1038/srep41470].
  • [16] Hemmatzadeh R., Jamali A.: Enhancing the optical absorption of anthocyanins for dye-sensitized solar cells. Journal of Renewable and Sustainable Energy 7/2015, [DOI: 10.1063/1.4907599].
  • [17] Iqbal M.Z., Ali S.R., Khan S.: Progress in dye sensitized solar cell by incorporating natural photosensitizers. Solar Energy 181/2019, 490–509, [DOI: 10.1016/j.solener.2019.02.023].
  • [18] Jackson P., Wuerz R., Hariskos D., Lotter E., Witte W., Powalla M.: Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Physica Status Solidi 10/2016, 583–586, [DOI: 10.1002/pssr.201600199].
  • [19] Jonathan E., Onimisi M.Y., Eli D.: Natural pigments as sensitizers for dye sensitized solar cells. Advances in Materials 5/2016, 31–34, [DOI: 10.11648/j.am.20160505.11].
  • [20] Kabir F., Sakib S.N., Matin N.: Stability study of natural green dye based DSSC. Optik 181/2019, 458–464, [DOI: 10.1016/j.ijleo.2018.12.077].
  • [21] Kakiage K., Aoyama Y., Yano T., Oya K., Fujisawa J.-I., Hanaya M.: Highly-efficient dye-sensitized solar cells with collaborative sensitization by silylanchor and carboxy-anchor dyes, Chemical Communications 51/2015, 15894–15897, [DOI: 10.1039/c5cc06759f].
  • [22] Krawczak E., Zdyb A.: The influence of the dye adsorption time on the DSSC performance. E3S Web of Conferences 100/2019, [DOI: 10.1051/e3sconf/201910000040].
  • [23] Kumar, R., Sharma, A.K., Parmar, V.S., Watterson, A.C., Chittibabu, K.G., Kumar, J., Samuelson, L.A.: Flexible, dye-sensitized nanocrystalline solar cells employing biocatalytically synthesized polymeric electrolytes. Chemistry of Materials 16/2004, 4841–4846, [DOI: 10.1021/cm0496568].
  • [24] Lee C.-P., Lin R. Y.-Y., Lin L.-Y., Li C.-T., Chu T.-C., Sun S.-S, Lin J. T., Ho K.-C.: Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances 5/2015, 23810–23825, [DOI: 10.1039/C4RA16493H].
  • [25] Lee K.E., Gomez M.A., Elouatik S., Demopoulos G. P.: Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging. Langmuir 26/2010, 9575–9583, [DOI: 10.1021/la100137u].
  • [26] Li W., Lv F., Shu T., Tan X., Jiang L., Xiao T., Xiang P.: Improving the performance of FTO conducting glass by SiO2 and ZnO anti-reflection films for dye-sensitized solar cells. Materials Letters 243/2019, 108–111, [DOI: 10.1016/j.matlet.2019.01.158].
  • [27] Mahmood A.: Triphenylamine based dyes for dye sensitized solar cells: a review. Solar Energy 123/2016, 127–144, [DOI: 10.1016/j.solener.2015.11.015].
  • [28] Mallick A., Basak D.: Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs. Progress in Materials Science 96/2018, 86–110, [DOI: 10.1016/j.pmatsci.2018.03.004].
  • [29] Manmeeta, Dhiraj S., Sharma G.D., Roy M.S: Improved performance of oxidized Alizarin based Quasi solid state Dye Sensitized solar cell by Surface Treatment. Research Journal of Chemical Sciences 2/2012, 61–71.
  • [30] Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin M.K., Gratzel M.: Dye-sensitizedsolar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry 6/2014, 242–247, [DOI: 10.1038/nchem.1861].
  • [31] Mehmood, U., Rahman, S.-U., Harrabi, K., Hussein, I.A., Reddy, B.: Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering 2014, 1–12, [DOI: 10.1155/2014/974782].
  • [32] O‘Regan B., Grätzel M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353/1991, 737–740, [DOI: 10.1038/353737a0].
  • [33] Polo A.S., Itokazu M.K., Iha N.Y.M.: Metal complex sensitizers in dye sensitized solar cells. Coordination Chemistry Reviews 248/2004, 1343–1361, [DOI: 10.1016/j.ccr.2004.04.013].
  • [34] Roslan N., Ya'acob M.E., Radzi M.A.M., Hashimoto Y., Jamaludin D., Chen G.: Dye Sensitized SolarCell (DSSC) greenhouse shading: New insights for solar radiation manipulation. Renewable and Sustainable Energy Reviews 92/2018, 171–186, [DOI: 10.1016/j.rser.2018.04.095].
  • [35] Saini R.K., Kadyan P.S., Singh J., Bhagwan S., Singh D.: Fabrication and Photovoltaic Characteristics of Alizarin Dye Based DSSCs. Der Pharma Chemica 11/ 2019, 43–48 [ISSN 0975-413X].
  • [36] Sawhney N., Raghav A., Satapathi S.: Utilization of Naturally Occurring Dyes as Sensitizers in Dye Sensitized Solar Cells. IEEE Journal of Photovoltaics 7/2016, 539–544, [DOI: 10.1109/JPHOTOV.2016.2639343].
  • [37] Shelke R.S., Thombre S.B., Patrikar S.R.: Status and perspectives of dyes used in dye sensitized solar cells. International Journal of Renewable Energy Research 3/2013, 54–61.
  • [38] Shikoh A.S., Ahmad Z., Touati F., Shakoor R.A., Al-Muhtaseb S.A.: Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceramics International 43/2017, 10540–10545, [DOI: 10.1016/j.ceramint.2017.05.113].
  • [39] Singh A.M.B.G., Durai A., Murugeasan S.: Evaluation of Colour and Stability of Anthocyanin in Red Tamarind (Tamarindus indica L). International Journal of Advanced Life Sciences 5/2012, 137–144.
  • [40] Syafinar R., Gomesh N., Irwanto M., Fareq M., Irwan Y.M.: Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC). Energy Procedia 79/2015, 896–902, [DOI: 10.1016/j.egypro.2015.11.584].
  • [41] Taya S.A., El-Agez T.M., El-Ghamri H.S., Abdel-Latif M.S.: Dye-sensitized solar cells using fresh and dried natural dyes. International Journal of Materials Science and Applications 2/2013, 37–42, [DOI: 10.11648/j.ijmsa.20130202.11].
  • [42] Taya S.A., El-Agez T.M., Elferi K.S.: Dye-sensitized solar cells based on dyes extracted from dried plant leaves. Turkish Journal of Physics 39/2015, 24–30, [DOI: 10.3906/fiz-1312-12].
  • [43] Tennakone K., Bandara J.: Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites. Applied Catalysis A General 208/2001, 335–341, [DOI: 10.1016/S0926-860X(00)00738-9].
  • [44] Tributsch H.: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis. Journal of Photo-chemistry and Photobiology 16/1972, 261–269, [DOI: 10.1111/j.1751-1097.1972.tb06297.x].
  • [45] Tsao H.N., Burschka J., Yi C., Kessler F., Nazeeruddin M.K., Grätzel M.: Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles. Energy & Environmental Science 4/2011, 4921–4924, [DOI: 10.1039/C1EE02389F].
  • [46] Türkay B.E., Telli A.Y.: Economic Analysis of Stand Alone and Grid Connected Hybrid Energy Systems. Renewable Energy 36/2011, 1931–1943, [DOI: 10.12691/ajme-4-5-3].
  • [47] Wang X.-F., Zhan C.-H., Maoka T., Wada Y., Koyama Y.: Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c1′ and c2′ from Undaria pinnatifida (Wakame). Chemical Physics Letters 447/2007, 79–85, [DOI: 10.1016/j.cplett.2007.08.097].
  • [48] Wei D.: Dye Sensitized Solar Cells. International Journal of Molecular Sciences 11/2010, 1103–1113, [DOI: 10.3390/ijms11031103].
  • [49] Yella A., Lee H.-W., Tsao H.N., Yi C., Chandiran A K., Nazeeruddin Md.K., Diau E.W.-G., Yeh C.-Y., Zakeeruddin S.M., Grätzel M.: Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 334/2011, 629–634, [DOI: 10.1126/science.1209688].
  • [50] Yoshikawa K., Kawasaki H., Yoshida W., Irie T., Konishi K., Nakano K., Uto T., Adachi D., Kanematsu M., Uzu H., Yamamoto K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy 2/2017, 1–8, [DOI: 10.1038/nenergy.2017.32].
  • [51] Zhang D., Lanier S.M., Downing J.A., Avent J.L., Lum J., McHale J.L.: Betalain pigments for dyesensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 195/2008, 72–80, [DOI: 10.1016/j.jphotochem.2007.07.038].
  • [52] Zhang S., Yang X., Numata Y., Han L.: Highly efficient dye-sensitized solar cells: progress and future challenges. Energy & Environmental Science 6/2013,1443–1464, [DOI: 10.1039/C3EE24453A].
  • [53] Eurepean Commisssion Statement, http://europa.eu/rapid/press-release_STATEMENT-18-4155_en.htm [01.08.2019].
  • [54] International Energy Agency, Executive Summary, 2018, IEA Publications, https://webstore.iea.org/download/summary/190?fileName=English-WEO-2018-ES.pdf [01.08.2019].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f07b7f8a-efe7-4af5-b499-7fe02c2cf354
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.