Identyfikatory
Warianty tytułu
Biobenefication of Mineral Resources – Microbe-Mineral Interaction
Języki publikacji
Abstrakty
Procesy biologiczne w przeróbce surowców mineralnych są korzystną alternatywą dla tradycyjnych fizykochemicznych metod wzbogacania. Stwarzają możliwość przetwarzania rud gorszej jakości, a także odpadów przeróbczych zawierających metale użyteczne, jak również przyczyniają się do ochrony środowiska przyrodniczego przed negatywnym wpływem działalności górniczej. Biowzbogacanie obejmuje procesy bioflotacji i bioflokulacji, czyli selektywnego rozdzielenia składników mieszaniny w celu wyodrębnienia produktów wzbogaconych w składniki użyteczne pod wpływem adhezji komórek bakteryjnych na powierzchniach mineralnych. Efektem tych procesów jest modyfikacja powierzchni mineralnej, a także selektywne rozpuszczenie składników mineralnych, bioakumulacja rozpuszczonych jonów metali oraz utworzenie bądź konwersja różnych form mineralnych. W artykule przedstawiono szeroki przegląd literatury światowej związanej z tematyką wykorzystania bakterii w inżynierii mineralnej. Podano przykłady zastosowania określonych mikroorganizmów do konkretnych surowców mineralnych.
Biological processes in mineral processing are beneficial alternative for traditional physicochemical beneficiation methods. They create possibilities to process ores of lower quality as well processing wastes containing useful metals. They also support environmenal protection minimizing negative influence of mining activity. Biobenefication cover processes of bioflotation and bioflocculation which are selective separation of mixture components under influence of adhesion of bacteria cells on mineral surfaces. The effect of these processes are modification of mineral surface and selective dissolution of mineral components, bioaccumulation of dissolved metal ions and creation or conversion of various mineral forms. The paper presents wide review of world scientific literature connected with topic of applying bacteria in mineral engineering. The examples of using certain microorganisms to certain mineral raw materials were provided.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
271--278
Opis fizyczny
Bibliogr. 53 poz., rys., tab., zdj.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Mining and Geoengineering
autor
- AGH University of Science and Technology, Faculty of Mining and Geoengineering
Bibliografia
- 1. Attia Y. A., Elzeky M., 1993. Enhanced separation of pyrite from oxidized coal by froth flotation using biosurface modification. Int J Miner Process., 37, 61-71
- 2. Boström, M., Deniz, V., Franks, G.V., Ninham, B.W., 2006. Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions. Adv. Colloid Interface Sci, 16, 123-126
- 3. Botero Ana Elisa Casas, Torem Maurıcio Leonardo, de Mesquita Luciana Maria Souza, 2007. Fundamental studies of Rhodococcus opacus as a biocollector of calcite and magnesite. Minerals Engineering, 20, 1026–1032
- 4. Botero Ana Elisa Casas, Torem Maurıcio Leonardo, de Mesquita, 2008. Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Minerals Engineering, 21, 83–92
- 5. Chandraprabha M.N., Natarajan K.A., Jayant M. Modak, 2004b. Selective separation of pyrite and chalcopyrite by biomodulation. Colloids and Surfaces B: Biointerfaces, 37, (3–4), 93-100
- 6. Chandraprabha M.N., Natarajan K.A., 2013. Role of outer membrane exopolymers of Acidithiobacillus ferrooxidans in adsorption of cells onto pyrite and chalcopyrite. International Journal of Mineral Processing, vol. 123, 152-157
- 7. Chandraprabha M.N., Natarajan K.A., Somasundaran P., 2004a. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans. Journal of Colloid and Interface Science, vol. 276, (2), 323-332
- 8. Chandraprabha M.N., Natarajan K.A., Somasundaran P., 2005. Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans International Journal of Mineral Processing, Vol 75, (1–2), 113-122
- 9. de Mesquita L.M.S.,. Linsb F.F,. Torema M.L., 2003. Interaction of a hydrophobic bacterium strain in a hematite–quartz flotation system. Int. J. Miner. Process., 71, 31– 44
- 10. Deo Namita; Natarajan K.A; Somasundaran P., 2001. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz. Int. J. Miner. Process., 62, 27–39
- 11. Deo, N., Natarajan, K.A., 1997. Interaction of Bacillus polymyxa with some oxides minerals with reference to mineral beneficiation and environmental control. Minerals Engineering, 10 (12), 1339–1354
- 12. Deo, N., Natarajan, K.A., 1998. Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation. Int. J. Miner. Process., 55, 41–60
- 13. Didyk, A. M. , Sadowski, Z., 2012. Flotation of serpentinite and quartz using biosurfactants. Physicochemical Problems of Mineral Processing, Vol. 48, (2), 607-618
- 14. Gaweł J., I. Maliszewska, Z. Sadowski, 1997. The effect of biopretreatment on the flotation recovery of magnesite tailings. Minerals Engineering, 10, (8), 813-824
- 15. Hołda A., Młynarczykowska A., 2014. Bioflotation as an Alternative Method for Desulphurization of Fine Coals - Part I; Journal of the Polish Mineral Engineering Society, 34, (2) 263-268
- 16. Hosseini, T.R., Kolahdoozan, M., Tabatabaei, Y.S.M., Oliazadeh, M., Noaparast, M., Eslami, A., Manafi, Z., Alfantazi, A., 2005. Bioflotation of Sarcheshmeh copper ore using Thiobacillus ferroxidans bacteria. Minerals Engineering, 18, (3), 371–374.
- 17. Jia C.Y., Wei D.Z., Li P.J., Li X.J., Tai P.D., Liu W., Gong Z.Q., 2011. Selective adsorption of Mycobacterium phlei on pyrite and sphalerite. Colloids and Surfaces B: Biointerfaces, 83, 214–219
- 18. Jucker B. A., Harms H., Zehnder A. J., 1996. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J. Bacteriol., 178, (18), 5472–5479
- 19. Kim Gahee; Kyuhyeong Park, Junhyun Choi, Allan Gomez-Flores, Yosep Han, Siyoung Q. Choi, Hyunjung Kim, 2015. Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow. International Journal of Mineral Processing , 143, 98–104
- 20. Lopez L.Y. Antonio G. Merma, Mauricio L. Torem, Gabriela H. Pino, 2015. Fundamental aspects of hematite flotation using the bacterial strain Rhodococcus ruber as bioreagent. Minerals Engineering, 75, 63–69
- 21. Marcinčáková R., Mraźiková A, Velgosová O., Kaduková J., Vojtko M., Holub M., 2014. The Influence of Spore Age of Aspergillus Niger on Lithium Dissolution from Lepidolite; Journal of the Polish Mineral Engineering Society, 34, (2), 211-216
- 22. Marcinčáková R., Kaduková J., Mraźiková A., 2015. Bioleaching of Lithium from Lepidolite by the Mixture of Rhodotorula Rubra and Acidithiobacillus Ferrooxidans. Journal of the Polish Mineral Engineering Society, 36, (2), 85–88.
- 23. Marshall K. C., Stout R., Mitchell R, 1971. Mechanism of the Initial Events in the Sorption of Marine Bacteria to Surfaces. Microbiology, 68, 337-348
- 24. Mehrabani J.V., Mousavi S.M., Noaparast M., 2011. Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead–zinc ore. Separation and Purification Technology, 80, 202–208
- 25. Mehrabani J.V., Noaparast M., Mousavi S.M., Dehghan R., Rasooli E., Hajizadeh H., 2010. Depression of pyrite in the flotation of high pyrite low-grade lead-zinc ore using Acidithiobacillus ferrooxidans. Miner. Eng., 23, 10–16
- 26. Natarajan K.A., Namita Deo, 2001. Role of bacterial interaction and bioreagents in iron ore flotation. Int. J. Miner. Process., 62, 143–157
- 27. Natarajan, K.A., Das, A., 2003. Surface chemical studies on ‘Acidithiobacillus’ group of bacteria with reference to mineral flocculation. International Journal of Mineral Processing, 72, 189–198.
- 28. Ohmura N., Kitamura K., Saiki H., 1993. Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression. Biotechnol. Bioeng., 41, 671–676
- 29. Patra P., Natarajan K.A., 2008. Role of mineral specific bacterial proteins in selective flocculation and flotation. Int. J. Miner. Process., 88, 53–58
- 30. Patra, P., Natarajan, K.A., 2003. Microbial-induced flocculation and flotation for pyrite separation from oxide gangue minerals. Minerals Engineering, 16, 965–973.
- 31. Patra, P., Natarajan, K.A., 2004. Microbially induced flocculation and flotation for separation of chalcopyrite from quartz and calcite. International Journal of Mineral Processing, 74, 143–155.
- 32. Poorni S., Natarajan K.A., 2014. Flocculation behaviour of hematite–kaolinite suspensions in presenceof extracellular bacterial proteins and polysaccharides. Colloids and Surfaces B: Biointerfaces, 114, 186– 192
- 33. Poortiga, A., Boss, R., Norde, W., Bussher, H., 2002. Electric double layer interactions in bacterial adhesion to surfaces. Surface Science Reports, 47, 1–32.
- 34. Prakasan M.R. Sabari, Natarajan K.A., 2010. Microbially induced separation of quartz from hematite using sulfate reducing bacteria. Colloids and Surfaces B: Biointerfaces, 78, 163–170
- 35. Raichur, A.M., Misra, M., Bukka, K., Smith, R.W., 1996. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei. Colloids and Surfaces. B, Biointerfaces, 8, 13– 24.
- 36. Rawlings D.E., 1997. Biomining. Theory, Microbes and Industrial Processes. Springer
- 37. Rijnaarts Huub H.M., Norde W., Bouwer E.J., Lyklema J., Zehnder A.J.B., 1995. Reversibility and mechanism of bacterial adhesion. Colloids and Surfaces B: Biointerfaces, 4, 5-22
- 38. Santhiya D., S. Subramanian, K.A. Natarajan, K. Hanumantha Rao, Forssberg K.S.E., 2001. Bio-modulation of galena and sphalerite surfaces using Thiobacillus thiooxidans. Int. J. Miner. Process., 62, 121–141
- 39. Sarvamangala H., Natarajan K.A., 2011. Microbially induced flotation of alumina, silica/calcite from haematite. International Journal of Mineral Processing, 99, 70–77
- 40. Sharma P.K., Hanumantha Rao K., 2003. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory. Colloids and Surfaces B: Biointerfaces, 29, 21-38
- 41. Sharma, K.E., Rao, Hunumantha K., 2002. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Advances in Colloids and Interfaces Science, 98, 341–463.
- 42. Sharma, P.K., Rao, H., Natarajan, K.A., Forssberg, K.S.E., 2001. Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals. Int. J. Miner. Process., 62, 3–25
- 43. Shashikala, A.R., Raichur, A.M., 2002. Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz. Colloids and Surfaces. B, Biointerfaces, 24, 11 –20
- 44. Smith, R.W., Miettinem, M., 2006. Microorganisms in flotation and flocculation: Future technology or laboratory curiosity? Minerals Engineering, 19, 548–553.
- 45. Somasundaran P., Yunzhi Ren, Mirajkar Yelloji Ran, 1998. Applications of biological processes in mineral processing. Colloids and Surfaces A: Physicochcmical und Engineering Aspect, 133, 13-23
- 46. Subramanian, S., Santhiya, D., Natarajan, K.A., 2003. Surface modification studies on sulphide minerals using bioreagents. International Journal of Mineral Processing, 72, (1-4), 175–188.
- 47. Vilinska A., Hanumantha K. Rao, 2008. Leptosririllum ferrooxidans-sulfide mineral interactions with reference to bioflotation nad bioflocculation. Trans. Nonferrous Met. Soc. China, 18
- 48. Wang Zhao-hui, Xie Xue-hui, Liu Jian-she, 2012. Experimental measurements of short-term adsorption of Acidithiobacillus ferrooxidans onto chalcopyrite. Transactions of Nonferrous Metals Society of China, 22, (2), 442–446
- 49. Yageshni Govender, Gericke Mariekie, 2011. Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Minerals Engineering, 24, 1122–1127
- 50. Yang Huifen, Qiongyao Tang, Chuanlong Wang, Jinlong Zhang, 2013. Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Minerals Engineering, 45, 67–72
- 51. Yang Zhi-chao, Feng Ya-li, LI Hao-ran, Wang Wei-da, Teng Qing, 2014. Effect of biological pretreatment on flotation recovery of pyrolusite. Trans. Nonferrous Met. Soc. China, 24, 1571−1577
- 52. Yee N., Fein J. B., Daughney C. J., 1999. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochimica Cosmochimica Acta, 64, (4), 609–617
- 53. Zheng X.-P, P.J. Arps, R.W. Smith, 2001. Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation. International Journal of Mineral Processing, 62, 159–172
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0763394-8706-41be-b753-cbc816153dbf