PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eco-investments - life cycle assessment of different scenarios of biomass combustion

Identyfikatory
Warianty tytułu
PL
Ekoinwestycje - ocena cyklu życia dla różnych scenariuszy spalania biomasy
Języki publikacji
EN
Abstrakty
EN
The article presents the results of life cycle assessment of different scenarios of biomass use to produce energy in a selected company. The study is made on the case of Lesaffre Polska S.A. and its facility in Wolczyn which is one of the most modern biomass plants in Central Europe. The company is one of the leaders of using the environmental criteria in its strategic decision-making. Its goal is to avoid any waste and to form its own circular business system. One of its recent investments is a biomass fired steam boiler that uses agricultural and woody biomass to produce energy. Previously, biomass was sold to power plant and co-fired with coal. The scope of the paper is to assess the actual change in the environmental impact of biomass use in the Wolczyn facility. For that purpose, the life cycle assessment is used with the ReCiPe endpoint indicator. The assessment is based on the comparison of two scenarios: one assuming the biomass combustion in a new boiler, and the second one, assuming co-firing biomass with coal. The results of the study show that the investment is making a significant difference as far as the overall environmental impact is. Through avoiding the co-firing related emissions the company makes a big step ahead towards the decrease of their environmental impacts. The analysis shows that the significant impact in the co-firing scenario is posed in such categories as fossil depletion, climate change with impacts on human health and on ecosystems, particulate matter formation and agricultural land occupation. In the biomass combustion scenario, the above categories are complemented with metal depletion, natural land transformation, urban land occupation and human toxicity categories but with 4 times decrease of the overall impact. The study also shows that the change of the combustion system makes the most significant difference, while all the other factors, like biomass cultivation and processing, biomass transport have much lesser impact.
Rocznik
Strony
307--322
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Faculty of Management, Czestochowa University of Technology, al. Armii Krajowej 19B, 42-200 Częstochowa, Poland, phone +48 34 325 04 84
  • Faculty of Management, Czestochowa University of Technology, al. Armii Krajowej 19B, 42-200 Częstochowa, Poland, phone +48 34 325 04 84
Bibliografia
  • [1] Rodziewicz T, Teneta J, Zaremba A, Wacławek M. Analysis of solar energy resources in Southern Poland for photovoltaic applications. Ecol Chem Eng S. 2012;20(1):177-198. DOI: 10.2478/eces-2013-0014.
  • [2] Królczyk J, Rezwiakow A, Tukiendorf M. Mixing of biomass and coal in a static mixer as an example of technological solutions involving implementation of renewable energy. Ecol Chem Eng S. 2014;21(4):685-696. DOI: 10.1515/eces-2014-0050.
  • [3] Directive of the European Parliament and Council Directive 2009/28/EC of 23 April 2009. On the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/WE and 2003/30/WE (Dz.Urz L140, 05/06/2009 P. 0016-0062). http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32009L0028.
  • [4] Ericsson K, Nilsson LJ. Assessment of the potencial biomass a supply in Europe using a resources focused approach. Biomass Bioenergy. 2006;30:1-15. DOI: 10.1016/j.biombioe.2005.09.001.
  • [5] Bernedes G, Hoogwijk M, Richard Van den Broek R. The contribution of biomass in the future global energy supply a review of 17 studies. Biomass Bioenergy. 2003;(25):1-28. DOI: 10.1016/S0961-9534(02)00185-X.
  • [6] Beringer T, Lucht W, Schaphoff S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy. 2011;3(4):299-321. DOI: 10.1111/j.1757-1707.2010.01088.x
  • [7] Jachniak E, Holubčik M. Characteristics of pellets made from different plant materials. Proc ECOpole. 2015;9(1):95-101. DOI: 10.2429/Proc.2015.9(1)012.
  • [8] Biomass. Green Energy for Europe. European Commission, D-G for Research Sustainable Energy Systems, 2005. https://ec.europa.eu/research/energy/pdf/biomass_en.pdf.
  • [9] Polityka energetyczna Polski do 2030 roku. Załącznik do uchwały nr 202/2009 Rady Ministrów z dnia 10 listopada 2009 (Polish Energy Policy until 2030, Annex to Resolution No. 202/2009 of the Council of Ministers 10 November 2009). http://www.me.gov.pl/files/upload/8134/Polityka%20energetyczna%20ost.pdf.
  • [10] Demirbas A. Combustion characteristics of different biomass fuel. Prog Energy Combust Sci. 2004; 30(2):219-230. DOI: 10.1016/j.pecs.2003.10.004.
  • [11] Jenkins BM, Baxter LL, Miles Jr. TR, Miles TR. Combustion properties of biomass. Fuel Process Technol. 1998;54:17-46. DOI: 10.1016/S0378-3820(97)00059-3.
  • [12] Samomssa I, Nono Y, Kamga R. Energy potential of waste derived from some food crop products in the northern part of Cameroon. Int J Energy Power Eng. 2015;4(6):342-352. DOI: 10.11648/j.ijepe.20150406.13.
  • [13] Nussbaumer T. Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels. 2003;17(6):1510-1521. DOI: 10.1021/ef030031q.
  • [14] Baxter L. Biomass-coal co-combustion: opportunity for affordable renewable energy. Energy Fuels. 2005;84(10):1295-1302. DOI: 10.1016/j.fuel.2004.09.023.
  • [15] Krzywański J, Rajczyk R, Bednarek M, Wesołowska M, Nowak W. Gas emissions from a large scale circulating fluidized bed boilers burning lignite and biomass. Fuel Process Technol. 2013;116:27-34. DOI: 10.1016/j.fuproc.2013.04.021.
  • [16] Parikka M. Global biomass fuel resources. Biomass Bioenergy. 2004;27:613-620. DOI: 10.1016/j.biombioe.2003.07.005.
  • [17] Hellen MC, Keoleian GA, Volk TA. Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy. 2003;25:12-14. DOI: 10.1016/S0961-9534(02)00190-3.
  • [18] Randolph J. Enviromental Land Use Planning and Management. Washington: Island Press; 2004. ISBN13: 9781559639484.
  • [19] Plan Zagospodarowania Przestrzennego Województwa Opolskiego. Załącznik nr 1 do Uchwały nr XLVIII/505/2010 Sejmiku Województwa Opolskiego z dnia 28 września 2010 (Spatial Development Plan of the Opole Province. Appendix No.1 to the Resolution No. XLVIII /505/2010 of the Opole Regional Assembly of September 28,2010). http://dobryporod.opolskie.pl/serwis/index.php?id=3179.
  • [20] Jolliet O, Saade-Sbeih M, Shaked S, Jolliet A, Crettaz P. Environmental Life Cycle Assessment. Boca Raton FL: CRC Press; 2015. ISBN: 9781439887660.
  • [21] Baden-Fuller C, Morgan M. S. Business models as models. Long Range Plan. 2010;43:156-171. http://www.businessmodelcommunity.com/fs/Root/8jig2-businessmodelsasmodels.pdf.
  • [22] Lewandowska A. Environmental life cycle assessment as a tool for identification and assessment of environmental aspects in environmental management systems (EMS) part 1: methodology. Int J Life Cycle Assess. 2011;16:178-186. https://doi.org/10.1007/s11367-011-0253-2.
  • [23] López-Bellido L, Wery J, López-Bellido RJ. Energy crops: Prospects in the context of sustainable agriculture. Eur J Agron. 2014;60:1-12. DOI: 10.1016/j.eja.2014.07.001.
  • [24] Khorshidi Z, Ho MT, Wiley DE. The impact of biomass quality and quantity on the performance and economics of co-firing plants with and without CO2 capture. Int J Greenhouse Gas Control. 2014;21:191-202. DOI: 10.1016/j.ijggc.2013.12.011.
  • [25] Schakel W, Meerman H, Talaei A, Ramírez A, Faaij A. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage Appl Energy. 2014;131:441-467. DOI: 10.1016/j.apenergy.2014.06.045.
  • [26] Kabir R, Kumar A. Bioresource technology comparison of the energy and environmental performances of nine biomass/coal co-firing pathways. Bioresour Technol. 2012;124:394-405. DOI: 10.1016/j.biortech.2012.07.106.
  • [27] Andric I, Corre O Le, Jamali-Zghal N, Santarelli M, Lacarri B. Environmental performance assessment of retro fitting existing coal fired power plants to co-firing with biomass: carbon footprint and energy approach. J Cleaner Prod. 2015;103:13-27. DOI: 10.1016/j.jclepro.2014.08.019.
  • [28] Goglio P, Owende PMO. Research Note: IT Information Technology and the Human Interface A screening LCA of short rotation coppice willow (Salix sp.) feedstock production system for small-scale electricity generation. Bioprocess Biosyst Eng. 2009;103(3):389-394. DOI: 10.1016/j.biosystemseng.2009.03.003.
  • [29] Nian V. The carbon neutrality of electricity generation from woody biomass and coal, a critical comparative evaluation Intergovernmental Panel on Climate Change. Appl Energy. 2016;179:1069-1080. DOI: 10.1016/j.apenergy.2016.07.004.
  • [30] Murphy F, Sosa A, Mcdonnell K, Devlin G. Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction. Energy Fuels. 2016;109:1040-1055. DOI: 10.1016/j.energy.2016.04.125.
  • [31] Dahiya A. Bioenergy. Biomass to Biofuels. Cambige: Academic Press; 2015. ISBN: 9780124079090.
  • [32] Tonini D, Astrup T. LCA of biomass-based energy systems: A case study for Denmark. Appl Energy. 2012;99:234-246. DOI: 10.1016/j.apenergy.2012.03.006.
  • [33] Tonini D, Hamelin L, Alvarado-Morales M, Fruergaard T. Bioresource technology GHG emission factors for bioelectricity, biomethane and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Bioresour Technol. 2016;208:123-133. DOI: 10.1016/j.biortech.2016.02.052.
  • [34] González-García S, Iribarren D, Susmozas A, Dufour J, Murphy RJ. Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation. Appl Energy. 2012;95:111-122. DOI: 10.1016/j.apenergy.2012.02.022.
  • [35] www.lesaffre.pl/firma/odpowiedzialnosc-spoleczna (access: 1 April 2016).
  • [36] Ociepa-Kubicka A, Nitkiewicz T, Karamon B. Ecological actions of company in the range of energy generation from biomass. Proc ECOpole. 2016;10(1):239-246. DOI: 10.2429/proc.2016.10(1)026.
  • [37] Nag P.K. Power Plant Engineering. New Delhi: Tata McGraw-Hill Publishing Company Limited; 2008. ISBN13: 9780070648159.
  • [38] Goedkoop MJ, Heijungs R, Huijbregts MAJ, De Schryver AM, Struijs J, Van Zelm R. ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: Characterisation. 6 January 2009, http://www.lcia-recipe.net.
  • [39] Śliwińska A. State of the art on allocation in LCA and proposals for changes in ISO 140044. Eng Prot Environ. 2017:20(1):97-119. DOI: 10.17512/ios.2017.1.8.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f073d86c-14e7-488f-a649-c8fb2c27c7c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.