Identyfikatory
Warianty tytułu
Possibility of using carbon isotopes in the assessment of the pollution of gas phase in environmental research
Języki publikacji
Abstrakty
Badania izotopowe węgla mogą być wykorzystywane do celów poznawczych oraz praktycznych. Mogą służyć określeniu genezy węgla w wybranym środowisku geochemicznym, jak również mogą być stosowane do wykazania zanieczyszczenia środowiska związkami zawierającymi węgiel. Celem artykułu jest przedstawienie szerokich możliwości wykorzystania oznaczeń izotopowych węgla do interpretacji dotyczącej następujących elementów środowiska przyrodniczego: powietrza atmosferycznego, strefy przypowierzchniowej (gazów w glebie i strefie aeracji) pod kątem naturalnych i antropogenicznych czynników wpływających na stan ich jakości. Przeprowadzona analiza wykazała, że metoda opierająca się o pomiary składu izotopowego węgla w środowisku przyrodniczym może być stosowana powszechnie, wówczas gdy węgiel pochodzący z poszczególnych źródeł różni się składem izotopowym.
Carbon isotope analyses can be used for knowledge and practical purpose. They can be used to assess the genesis of carbon in geochemical environment, and may also be used to indicate environmental contamination by carbon-containing compounds. The aim of the paper is to indicate the possibilities of using carbon isotope composition for interpretation concerning the following elements of the natural environment: atmospheric air, subsurface zone (gases in soils and aeration zone) in terms of natural and anthropogenic factors influencing on their quality. This method can be applied universally, when carbon sources are different in isotopic composition.
Czasopismo
Rocznik
Tom
Strony
68--73
Opis fizyczny
Bibliogr. 76 poz., tab.
Twórcy
autor
- Instytut Hydrogeologii i Geologii Inżynierskiej, Wydział Geologii Uniwersytetu Warszawskiego, ul. Żwirki i Wigury 93, 02-089 Warszawa
Bibliografia
- 1. Andrews J.A., Harrison K.G., Matamala R., Schlesinger W.H., 1999. Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon Dioxide Enrichment (FACE). Soil Sci. Soc. Am. J., 63 (5), 1429–1435.
- 2. Atekwana E.A., Krishnamurthy R.V., 2004. Dissolved Inorganic Carbon (DIC) in Natural Waters for Isotopic Analysis, chapter 10. [In:] De Groot P. A. (eds.) Handbook of Stable Isotope Analytical Techniques, Elsevier, vol. I, 203–228.
- 3. Baedecker M.J., Back W., 1979. Hydrogeological Processes and Chemical Reactions at a Landfill. Ground Water, 17 (5), 429–437.
- 4. Bogner J., Spokas K.A., 1993. Landfill CH4: Rates, Fates, and Role in Global Carbon Cycle. Chemosphere, 26(1-4), 369–386.
- 5. Börjesson G., Svensson G.H., 1997. Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manage. Res., 15, 33–54.
- 6. Börjesson G., Chanton J., Svensson B.H., 2001. Methane Oxidation in Two Swedish Landfill Covers Measured with Carbon-13 to Carbon-12 Isotope Ratios. Journal of Environm. Quality, 30, 369–376.
- 7. Boutton T.W., 1991. Stable carbon isotope ratios of natural materials, XI. Atmospheric. terrestrial, marine and freshwater environment. [In:] Coleman D.C, Fry B. (Eds). Carbon Isotope Techniques. Academic Print, San Diego California, 173–186.
- 8. Boutton T.W., 1996. Stable isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. [In:] Mass Spectrometry of Soils, 47–82.
- 9. Brugnoli E., Farquhar G.D., 2000. Photosynthetic fractionation of carbon isotopes. [In:] Leegood RC, Sharkey TD, Von Caemmerer S (Eds.) Photosynthesis: physiology and metabolism. Kluwer, Dordrecht, 399–434.
- 10. Cerling T.E. 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sc. Lett. 71 (2), 229−240.
- 11. Cerling T.E., Solomon D.K., Quade J., Bowman J.R., 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochim. Cosmochim. Acta, vol. 55, 3403−3405.
- 12. Cerling T.E., Quade J., 1993. Stable Carbon and Oxygen isotopes in Soil Carbonates. [In:] Swart P.K, Lohmann K.C., Mckenzie J., Savin S. Climate Change in Continental Isotopic Records, American Geophysical Union.
- 13. Christensen T.H., Kjeldsen P., Bjerg P.L., Jensen D.L., Christensen J.B., Baun A., Albrechtsen H.-J., Heron G., 2001. Biogeochemistry of landfill leachate plumes, Appl. Geochem., 16 (7-8), 659−718.
- 14. Christophersen M, Kjeldsen P, Holst H, Chanton J., 2001. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation. Waste Manag. Res., 19 (6), 595-612.
- 15. Clymo R.S., Pearce D.M.E., 1995. Methane and Carbon Dioxide Production in Transport through and Efflux from a Peatland Philosophical Transactions. Physical Sciences and Engin., 351, 249−259.
- 16. Cozzarelli J.M., Suflita J.M., Ulrich G.A., Harris S.H., Scholl M.A., Schlottman J.L., Christenson S., 2000. Geochemical and microbiological methods for evaluating anaerobic processes in an aquifer contaminated by landfill leachate. Environ. Sci. Technol. 34, 4025−4033.
- 17. Cozzarelli I.M., Böhlke J.K., Masoner J., Breit G.N., Lorah M.M., Tuttle M.L.W., Jaeschke J.B., 2011. Biogeochemical evolution of a landfill leachate plume. Norman, Oklahoma. Ground Water. 49 (5), 663–687.
- 18. Craig H, Chou CC, Welhan JA, Stevens CM, Engelkemeir A., 1988. The isotopic composition of methane in polar ice cores. Science. 242 (4885), 1535−1539.
- 19. Deines P., 1980. The isotopic composition of reduced organic carbon. [In:] Fritz P., Fontes J.C., (Eds.). Handbook of Environmental Isotope Geochemistry. Elsevier, vol. 1, 329−406.
- 20. Drever J.I., 1982. The Geochemistry of natural waters. Prentice Hall, Inc, Englewood Clifs. Printed in the United States of America.
- 21. Dudziak A., Hałas S., 1996 a. Influence of freezing and thawing on the carbon isotope composition in soil CO2. Geoderma, 69, 209−216.
- 22. Dudziak A., Hałas S., 1996 b. Diurnal cycle of carbon isotope ratio in soil CO2 in various ecosystems. Plant and Soil, 183, 291–299.
- 23. Ehleringer J.R., Buchmann N., Flanagan L.B., 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecolog. Applic., 10, 412–422.
- 24. Farquhar G.J., Rovers F.A., 1973. Gas production during refuse decomposition, Air, Water and Soil Pollution 2 (4), 483–495.
- 25. Faure G., 1986. Principles of Isotope Geology, second edition. John Wiley and Sons, New York.
- 26. Fritz P., Fontes J.C. (Eds.) 1980. Handbook of Environmental Isotope Geochemistry, vol. 1. Elsevier, Amsterdam.
- 27. ftp.cmdl.noaa.gov (dostęp: 18.07.2015)
- 28. Games L.M., Hayes J.M., 1976. On the mechanisms of CO2 and CH4 production in natural anaerobic environments. W: Jerome O. (red.), Environ. Biogeochem., 1, 51–73.
- 29. Gorczyca Z., Różański K., Kuc T., Michalec B., 2003. Seasonal variability of the soil CO2 flux and its isotopic composition in southern Poland, Nukleonika, The International Journal of Nuclear Research, vol. 48 (4), 187–196.
- 30. Górka M., Sauer P.E., Lewicka-Szczebak D., Jędrysek M.O., 2011. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2, Environ. Pollut. 159, 294–301.
- 31. Grossman E.L., 1997. Stable carbon isotopes as indicators of microbial activity in aquifers. [In:] Hurst C.I. (ed.) Manual of environmental microbiology. American Society for Microbiology, Washington D C, 565–576.
- 32. Hackley K.C., Liu C.L., Coleman D.D., 1996. Environmental. isotope characteristics of landfill leachates and gases, Ground Water, 34, 827–836.
- 33. Hakala J.A., 2014. Use of stable isotopes to identify sources of methane in Appalachian Basin shallow groundwaters: a review, Environ. Sci. Processes Impacts, 16, 2080–2086.
- 34. Hanson P.J., Edwards N.T., Garten C.T., Andrews J.A., 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations, Biogeochemistry, 48, 115–146.
- 35. Hornibrook E.R.C., Longstaffe F.J., Fyfe W.S., 2000a. Factors influencing stable-isotope ratios in CH4 and CO2 within subenvironments of freshwater wetlands: implications for δ-signatures of emissions, Isotopes in Environment. and Health Studies, 36, 151–176.
- 36. Hornibrook E.R.C., Longstaffe F.J., Fyfe W.S., 2000b. Evolution of stable carbon-isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochimica et Cosmochimica Acta, 64, 1013–1027.
- 37. Inoue H., Sugimura Y., 1984. Diurnal change in 13C of atmospheric CO2, at Tsukuba, Japan. Geochem. J., 18, 315–320.
- 38. Jędrysek M.O., Skrzypek G., Wada E., Doroszko B., Kral T., Pazur A., Vijarnsorn P., Yasuo T., 1995. Analiza d13C i d34S w profilach torfowych a zmiany globalne. Przegl. Geol., 43 (12), 1004–1010.
- 39. Keeling C.O., 1961. The concentration and isotopie abundances of carbon dioxide in rural and marine air. Geoch. Cosmochim. Acta, 24, 277–298.
- 40. Kerfoot H.B., Baker J.A., Burt D.M., 2003. The use of isotopes to identify landfill gas effect on groundwater. J. Environ. Monit. 5, 896-901.
- 41. Kirtland B.C., Aelion C.M., Stone P.A., 2005. Assessing in situ mineralization of recalcitrant organic compounds in vadose zone sediments using δ13C and 14C measurements. Journal of Contaminant Hydrology, 76, 1–18.
- 42. Kjeldsen P., Barlaz M.A., Rooker A.P., Baun A., Ledin A., Christensen T.H., 2002. Present and Long Term Composition of MSW Landfill Leachate – A Review. Critical Reviews in Environmental Science and Technology, 32 (4), 297–336.
- 43. Korus A., Kotarba M., Nęcki J., 2002. Stężenie i skład izotopowy metanu atmosferycznego w Wałbrzyskim Okręgu Węglowym. Technika jądrowa w przemyśle, medycynie, rolnictwie i ochronie środowiska. t. 1, 232–235.
- 44. Kuc T., Zimnoch M., 1994. Evolution of isotopic composition and concentration of atmospheric CO2 as result of anthropogenic influences. Geograph. Pol., 62, 61–72.
- 45. Kuc T., Zimnoch M., 1998. Changes of the CO2 sources and sinks in a polluted urban area (South Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon, 40, 417–423.
- 46. Kuc T., Różański K., Nęcki J.M., Zimnoch M., Korus A., 2003. Antropogenic emission of CO2 and CH4 in an urban environmen. Applied Energy, 75 (3-4), 193–203.
- 47. Li S-L., Liu C-Q., Tao F-X., Lang Y-C., Han G-L., 2005. Carbon Biogeochemistry of Ground Water. Guiyang, Southwest China, Ground Water, 43 (4), 494–499.
- 48. Lowe D.C., Brenninkmeijer C.A.M., Manning,M.R., Sparks R.J., Wallace G., 1988. Radiocarbon determination of atmospheric methane at Baring Head. New Zealand, Nature, 332, 522–525.
- 49. Mohammadzadeh H., Clark I., Marschner M., St- Jean G., 2005. Compound Specific Isotopic Analysis (CSIA) of landfill leachate DOC components. Chem. Geol., 218, 3–13.
- 50. Mook W.G., Koompans M., Carter A.F., Keeling C.D., 1983. Seasonal, latitudinal and secular variations in the abundance and isotopic ratios of atmospheric CO2. Results from land stations. J. Geophys. Res., 88, 10915–10933.
- 51. Mook W.G. (Ed.), 2000. Environmental isotopes in the hydrological cycle. Principles and applications. Vol. I. Introduction – theory, methods, reviev. Technical Documents in Hydrology, No. 39, Vol. I, UNESCO, Paris, 1–280.
- 52. Mook W.G (Ed.), 2001. Environmental isotopes in the hydrological cycle. Principles and applications. Col. II. Atmospheric Water. Technical Documents in Hydrology, No. 39, Vol. II, UNESCO, Paris, 1–113.
- 53. Nęcki J. M., Schmidt M., Różański K., Zimnoch M., Korus A., Lasa J., Graul R., Levin I., 2003. Six-year record of atmospheric carbon dioxide and methane at a high-altitude mountain site in Poland. Tellus, 55B, 94–104.
- 54. Nęcki J.M., Chmura Ł., Zimnoch M., Różański K., 2013. Impact of Emissions on Atmospheric Composition at Kasprowy Wierch Based on Results of Carbon Monoxide and Carbon Dioxide Monitoring. Pol. J. Environ. Stud. Vol. 22, No. 4, 1119–1127.
- 55. O’Leary M.H., 1988. Carbon isotopes in photosynthesis. BioScience, 38, 328–336.
- 56. Palmer S.M., Hope D., Billett M.F., Dawson J.J.C., Bryant C.L., 2001. Sources of organic and inorganic carbon in a headwater stream: Evidence from carbon isotope studies. Biogeochem. 52, 321–338.
- 57. Pelak A.J., Sharma S., 2015. Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development. Environmental Pollution, 195, 91–100.
- 58. Porowska D., 2015. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes. Waste Management, 39, 216–225.
- 59. Rees J.F., 1980. The fate of carbon compounds in the landfill disposal of organic matter. J. Chem. Tech. Biotechnol., 30, 161–175.
- 60. Roslev P., King G. M., 1996, Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. Microbiol. Ecol., 19, 105–115.
- 61. Różański K., Korus A., Kuc T., Nęcki J.M., Zimnoch M., Gorczyca Z., 2003. Wyznaczenie zmienności stężenia atmosf. dwutlenku węgla, metanu i szesciofluorku siarki dla rejonu Polski i Europy Śr. (http://www.ftj.agh.edu.pl/~zfs/kaslab/pliki/RaportKoncowy)
- 62. Scartazza A., Mata C., Matteucci G., Yakir D., Moscatello S., Brugnoli E., 2004. Comparison of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia, 140 (2), 340–351.
- 63. Sharma S., Mulder M.L., Sack A., Schroeder K., Hammack R., 2014. Isotope Approach to Assess Hydrologic Connections During Marcellus Shale Drilling. Groundwater, vol. 52 (3), 424–433.
- 64. Skrzypek G., Jędrysek M.O., 2005. 13C/12C ratio in peat cores: record of past climates. [In:] Lichtfouse E., Schwarzbauer J., Robert D. (Eds.) Environmental Chemistry – Green Chemistry and Pollutants in Ecosystems. Springer-Verlag, 65–73.
- 65. Sundh I., Nilsson M., Grynberg G, Svensson B.H., 1994. Depth distribution of microbial production and oxidation of methane in Sphagnum dominated peatlands. Microbial Ecology, 27, 253–265.
- 66. Szaran J., 2000. Wahania koncentracji i składu izotopowego w atmosferycznym CO2. Przegl. Geol., 48 (10), 941–946.
- 67. Szaran J., Dudziak A., Trembaczowski A., Niezgoda H., Hałas S., 2005. Diurnal variations and vertical distribution of δ13C, and concentration of atmospheric and soil CO2 in a meadow site, SE Poland. Geological Quaterly, 49 (2), 135–144.
- 68. Telmer K., Veizer J., 1999. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin. Canada: carbon isotope perspectives, Chemical Geol., 159, 61–86.
- 69. Van Breukelen, B.M., Röling, W.F.M., Groen, J., Griffioen, J., Van Verseveld, H.W., 2003. Biogeochemistry and isotope geochemistry of a landfill leachate plume. J. Contam. Hydrol. 65, 245–268.
- 70. Walsh D.C., LaFleur R.G., Bopp R.F., 1993. Stable carbon isotopes in dissolved inorganic carbon of landfill leachate. Ground Water Manage. 16, 153–167.
- 71. Wessolek G., Schwärzel K., Renger M., Sauerbrey R., Siewert C., 2002. Soil hydrology and CO2 release of peat soils. J. Plant Nutr. Soil Sci., 165, 494–500.
- 72. Whiticar M.J., Faber E., Schoell M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation – Isotope evidence. Geochim. Cosmochim. Acta, vol. 50, n. 5, 693–709.
- 73. Whiticar M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.
- 74. Wingate L., Ogee J., Burlett R., Bosc A., Devaux M., Grace J., Loustau D., Gessler A., 2010. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytologist, 1–10.
- 75. Wynn J.G., Harden J.W., Fries T.L., 2006. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma, 131, 89–109.
- 76. Zimnoch M., Nęcki J.M., Florkowski T., Neubert R.E.M., 2004. Diurnal variability of δ13C and δ18O of atmospheric CO2 in the urban atmosphere of Kraków, Poland. Isotopes in Environmental and Health Studies, 40 (2), 129–143.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0727356-fa6b-4838-93fc-8fb9b3594d92