Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Analysis of the state of-the-art in research of minichannel heat exchangers, especially on the topic of flow maldistribution in multiple channels, has been accomplished. Studies on minichannel plate heat exchanger with 51 parallel minichannels with four hydraulic diameters, i.e., 461 μm, 574 μm, 667 μm, and 750 μm have been presented. Flow at the instance of filling the microchannel with water at low flow rates has been visualized. The pressure drop characteristics for single minichannel plate have been presented along with the channels blockage, which occurred in several cases. The impact of the mass flow rate and channels’ cross-section dimensions on the flow maldistribution were illustrated.
Czasopismo
Rocznik
Tom
Strony
135--148
Opis fizyczny
Bibliogr. 42 poz., fot., rys., wz.
Twórcy
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Energy and Industrial Apparatus, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Energy and Industrial Apparatus, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Energy and Industrial Apparatus, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] TUCKERMAN D.B.: Pease RFW High-performance heat sinking for VLSI. IEEE Electr. Device Lett 2(1981), 5, 126–129. DOI: 10.1109/EDL.1981.253672.
- [2] TENG J.: Fluid Dynamics in Microchannels. Intechopen 2012, 403–436. DOI: 10.1002/97835276314453.
- [3] MEHENDALE S.S., JACOBI A.M., SHAH R.K.: Fluid flow and heat transfer at micro- and mesoscales with application to heat exchanger design. Appl. Mech. Rev. 53(2000), 7, 175–193.
- [4] KANDLIKAR S.G., GRANDE W.J.: Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. Heat Tran. Eng. 24(2003), 1, 3–17. DOI: 10.1080/014576303040405.
- [5] ORNATSKII A.P., VINYARSKII L.S.: Heat transfer crisis in a forced flow of under-heated water in small-bore tubes. Teplofiz. Vysok. Temp. 3(1965), 441–451.
- [6] MUDAWAR I.A., EL-MASRI M.A. WU C.S., AUSMAN-MUDAWWAR J.R.: Boiling heat transfer and critical heat flux in high-speed rotating liquid films. Int. J. Heat Mass Tran. 28(1985), 4, 795–806. DOI: 10.1016/0017-9310(85)90230-3
- [7] STURGIS J.C., MUDAWAR I.: Assessment of CHF enhancement mechanisms in a curved, rectangular channel subjected to concave heating. J. Heat Transfer 121(1999), 2, 394–404.
- [8] HALL D.D., MUDAWAR I.: Ultra-high critical heat flux (CHF) for subcooled water flow boiling? II: high-CHF database and design equations. Int. J. Heat Mass Transf. 42(1999), 8, 1429–1456. DOI: 10.1016/S0017-9310(98)00242-7
- [9] MIKIELEWICZ D., MIKIELEWICZ J.: A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl. Therm. Eng. 30(2010), 16, 2357–2362. DOI: 10.1016/j.applthermaleng.2010.05.035.
- [10] MUDAWAR I: Assessment of high-heat-flux thermal management schemes. IEEE Trans. Comp. Pack. Technol. 24(2001), 2, 122–141. DOI: 10.1109/6144.926375.
- [11] MUDAWAR I. Two-phase microchannel heat sinks: theory, applications, and limitations. J. Electron Packag. 133(2011), 4, 41002–41031.
- [12] JIMENEZ P.E., MUDAWAR I.: A multi-kilowatt immersion-cooled standard electronic clamshell module for future aircraft avionics. J Electron Packag. 116(1994), 3, 220–229.
- [13] LACLAIR T.J., MUDAWAR I.: Thermal transients in a capillary evaporator prior to the initiation of boiling. Int. J. Heat Mass Tran. 43(2000), 21, 3937–3952. DOI: 10.1016/S0017-9310(00)00042-9
- [14] REDDY S.R., EBADIAN M.A., LIN C-X.: A review of PVT systems: thermal management and efficiency with single phase cooling. Int. J. Heat Mass Tran. 91(2015), 861–871. DOI: 10.1016/j.ijheatmasstransfer.2015.07.134.
- [15] MUDAWAR I., BHARATHAN D., KELLY K., NARUMANCHI S.: Two-phase spray cooling of hybrid vehicle electronics. IEEE Trans. Components Packag. Technol. 32(2009), 2, 501–512. DOI: 10.1109/TCAPT.2008.2006907.
- [16] JY R., LY L., XS D. et al.: Numerical investigations on characteristics of methane catalytic combustion in micro-channels with a concave or convex wall cavity. Energy Convers Manag 97(2015), 188–195. DOI: 10.1016/j.enconman.2015.03.058.
- [17] BERTHIER J., BRAKKE K.A., FURLANI E.P. et al: Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sensors Actuators, B Chem 206(2015), 258–267. DOI: 10.1016/j.snb.2014.09.040.
- [18] KIM S.M., MUDAWAR I.: Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows. Int. J. Heat Mass Tran. 77(2014), 627–652. DOI: 10.1016/j.ijheatmasstransfer.2014.05.036.
- [19] KANDLIKAR S.G.: High flux heat removal with microchannels – A roadmap of challenges and opportunities. Heat Transfer Eng. 26(2005), 8, 5–14. DOI: 10.1080/01457630591003655.
- [20] MUELLER A.C., CHIOU J.P.: Review of various types of flow maldistribution in heat exchangers. Heat Tranfer Eng. 9(1988),36–50. DOI: 10.1080/01457638808939664.
- [21] WEN J., LI Y.: Study of flow distribution and its improvement on the header of plate-fin heat exchanger. Cryogenics (Guildf) 44(2004), 11, 823–831. DOI: 10.1016/j.cryogenics.2004.04.009.
- [22] WANG J.: Theory of flow distribution in manifolds. Chem. Eng. J. 168(2011), 3, 1331–1345. DOI: 10.1016/j.cej.2011.02.050.
- [23] AMADOR C., GAVRIILIDIS A., ANGELI P.: Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage. Chem. Eng. J. 101(2004), 1-3, 379–390. DOI: 10.1016/j.cej.2003.11.031.
- [24] BEJAN A., ERRERA M.R.: Deterministic tree networks for fluid flow: geometry for minimal flow resistance between a volume and one point. Fractals 5(1997), 4, 685–695. DOI: 10.1142/S0218348X97000553.
- [25] RAMOS-ALVARADO B., LI P., LIU H., HERNANDEZ-GUERRERO A.: CFD study of liquid-cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cel ls. Appl. Therm. Eng. 31(2011), 14-15, 2494–2507. DOI: 10.1016/j.applthermaleng.2011.04.015.
- [26] BASSIOUNY M.K., Martin H.: Flow distribution and pressure drop in plate heat exchangers-I U-type arrangement. Chem. Eng. Sci. 39(1984), 4, 693–700. DOI: 10.1016/0009-2509(84)80176-1.
- [27] BASSIOUNY M.K., MARTIN H.: Flow distribution and pressure drop in plate heat exchangers-II Z-type arrangement. Chem. Eng. Sci. 39(1984), 4, 701–704. DOI: 10.1016/0009-2509(84)80177-3.
- [28] BAJURA R.A.: A model for flow distribution in manifolds. J. Eng. Power 93(1971), 1, 7–12.
- [29] ACRIVOS A., BABCOCK B.D., PIGFORD R.L.: Flow distributions in manifolds. Chem. Eng. Sci. 10(1959), 1-2, 112–124. DOI: 10.1016/0009-2509(59)80030-0.
- [30] WANG J., GAO Z., GAN G., WU D.: Analytical solution of flow coefficients for a uniformly distributed porous channel. Chem. Eng. J. 84(2001), 1, 1–6. DOI: 10.1016/S1385-8947(00)00263-1.
- [31] TUO H., HRNJAK P.: Effect of the header pressure drop induced flow maldistribution on the microchannel evaporator performance. Int. J. Refrig. 36(2013), 8, 2176–2186. DOI: 10.1016/j.ijrefrig.2013.06.002.
- [32] HUANG L., LEE M.S., SALEH K. et al.: A computational fluid dynamics and effectiveness-NTU based co-simulation approach for flow mal-distribution analysis in microchannel heat exchanger headers. Appl. Therm. Eng. 65(2014), 1-2, 447–457. DOI: 10.1016/j.applthermaleng.2014.01.046.
- [33] ZHANG Z., LI Y.: CFD simulation on inlet configuration of plate-fin heat exchangers. Cryogenics (Guildf) 43(2003), 12, 673–678. DOI: 10.1016/S0011-2275(03)00179-6.
- [34] NIELSEN K.K., ENGELBRECHT K., CHRISTENSEN D.V. et al.: Degradation of the performance of microchannel heat exchangers due to flow maldistribution. Appl. Therm. Eng. 40(2012), 236–247. DOI: 10.1016/j.applthermaleng.2012.02.019.
- [35] LALOT S., FLORENT P., LANG S.K., BERGLES A.E.: Flow maldistribution in heat exchangers. Appl. Therm. Eng. 19(1999), 8, 847–863. DOI: 10.1016/S1359-4311(98)00090-8.
- [36] MINQIANG P., DEHUAI Z., YONG T., DONGQING C.: CFD-based study of velocity distribution among multiple parallel microchannels. J. Comput. 4(2009), 11, 1133–1138. DOI: 10.4304/jcp.4.11.1133-1138.
- [37] KUMARAGURUPARAN G., KUMARAN R.M., SORNAKUMAR T., SUNDARARAJAN T.: A numerical and experimental investigation of flow maldistribution in a microchannel heat sink. Int. Commun. Heat Mass Tran. 38(2011), 10, 1349–1353. DOI: 10.1016/j.icheatmasstransfer.2011.08.020.
- [38] MANOJ SIVA V., PATTAMATTA A., DAS S.K.: Effect of flow maldistribution on the thermal performance of parallel microchannel cooling systems. Int. J. Heat Mass Tran. 73(2014), 424–428. DOI: 10.1016/j.ijheatmasstransfer.2014.02.017.
- [39] ANBUMEENAKSHI C., THANSEKHAR M.R.: Experimental investigation of header shape and inlet configuration on flow maldistribution in microchannel. Exp. Therm. Fluid Sci. 75(2016), 156–161. DOI: 10.1016/j.expthermflusci.2016.02.004.
- [40] MIKIELEWICZ D., KLUGMANN M.: A study of flow boiling heat transfer in minichannels. Arch Thermodyn. 29(2008), 2, 73–84.
- [41] MIKIELEWICZ D., KLUGMANN M., WAJS J.: Flow boiling intensification in minichannels by means of mechanical flow turbulising inserts. Int. J. Therm. Sci. 65(2013), 79–91. DOI: 10.1016/j.ijthermalsci.2012.10.002.
- [42] MIKIELEWICZ D., WAJS J., ANDRZEJCZYK R., KLUGMANN M.: Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels. Int J. Refrig. 68(2016), 226–241. DOI: 10.1016/j.ijrefrig.2016.03.005.
Uwagi
EN
The work presented in the paper was funded from the National Science Centre research project No. 2015/19/D/ST8/03201 in years 2016-2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0709e70-b81e-4dc2-bcb0-3fa6926958ad