PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dependence between nominal power deterioration and thermal efficiency of gas turbines due to fouling

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deterioration in the performance of gas turbines is a well-known phenomenon occurring during their operation. The most important form is a decrease in the internal efficiency of the compressor and turbine due to fouling, which is the most significant deterioration problem for an operator. This article presents the effect of gas turbine fouling as a drop in airflow, pressure ratio, and compressor efficiency resulting in a reduction in power output and thermal efficiency. This resulted in a decrease in the nominal power of a gas turbine and an increase in the fuel consumption (heat rate). The fouling effects were described using the example of the MT30 marine gas turbine with a nominal power of 36 MW. The estimated profit loss during the operation of the gas turbine was within the range of 1–10% of the total fuel consumption cost. A 2% deterioration in the output of a gas turbine accounted for US$ 10,000–20,000 per year and 1 MW of gas turbine nominal power (according to marine fuel prices in 2019–2020) – this means at least US$ 300,000 annually for an MT30. Due to the low accuracy of fuel consumption measurements, another possibility was provided. The correlation between the gas turbine power deterioration and thermal efficiency was presented, which made it possible to estimate the increase in the specific and total fuel consumption when the nominal power deterioration is known. Two linear approximations were proposed to calculate increases in the annual operating costs for an MT30 due to fouling.
Rocznik
Strony
45--53
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Bromley, A.F. (2012) Gas Turbine Power Degradation and Compressor Washing, Tutorial Part 2. ASME International Gas Turbine and Aeroengine Congress, Copenhagen Denmark, June 11–15, 2012.
  • 2. Domachowski, Z. & Dzida, M. (2019) Applicability of inlet air fogging to marine gas turbine. Polish Maritime Research 26(1), pp. 15–19, doi: 10.2478/pomr-2019-0002.
  • 3. Dzida, M. & Frost, J. (2017) Operation of Two-Shaft Gas Turbine in the Range of Open Anti-Surge Valves. Polish Maritime Research 24(4), pp. 85–92, doi: 10.1515/pomr2017-0139.
  • 4. Edge, W. (2016) 36MW MT30 Mechanical Drive Package – Technical Description, Rolls-Royce, March 2016 (internal material, not published).
  • 5. Herdzik, J. & Cwilewicz, R. (2017) Remarks on Utilization of Marine Trent 30 Gas Turbine as a Prime Mover on Vessels. Journal of KONES 24(2), pp. 91–98, doi: 10.5604/01.3001.0010.2904.
  • 6. Jeffs, E. (2003) Turbotect’s Innovative On-Line Wash Nozzle for Large Gas Turbines. Turbomachinery International Magazine 44, 3, pp. 28–29.
  • 7. Kurz, R. & Brun, K. (2012) Fouling Mechanisms in Axial Compressors. Journal of Engineering for Gas Turbines and Power 134(3), pp. 935–946, doi: 10.1115/GT2011-45012.
  • 8. Liu, Y., Banerjee, A., Kumar, A., Srivastava, A. & Goel, N. (2017) Effect of Ambient Temperature on Performance of Gas Turbine Engine. Annual Conference on the PHM Society 9(1), doi: 10.36001/phmconf.2017.v9i1.2471.
  • 9. Meher-Homji, C., Bromley, A. & Stalder, J. (2013) Gas Turbine Performance Deterioration and Compressor Washing. Proceedings of the 2nd Middle East Turbomachinery Symposium, Doha, Qatar, March 17–20, 2013.
  • 10. Mund, F.C. & Pilidis, P. (2004) A Review of Gas Turbine Washing Systems. ASME Turbo Expo: Power for Land, Sea and Air, Volume 4: Turbo Expo 2004, pp. 519–528, doi: 10.1115/GT2004-53224.
  • 11. Radthee, S., Dev, N. & Kumar, S. (2012) Effect of Operating Parameters on Gas Turbine Power Plant Performance. International Journal of Mechanical Engineering and Robotics Research 1, 3, pp. 296–310.
  • 12. Rahman, M.M., Ibrahim, T.K. & Abdalla, A.N. (2011) Thermodynamic Performance Analysis of Gas Turbine Power Plant. International Journal of Physical Sciences 6(14), pp. 3539–3550, doi: 10.5897/IJPS11.272.
  • 13. Schneider, E., Bussjaeger, S.D., Franco, S. & Therkorn, D. (2010) Analysis of Compressor On-Line Washing to Optimize Gas Turbine Power Plant Performance. Journal of Engineering for Gaz Turbines and Power 132(6), 062001, doi: 10.1115/1.4000133.
  • 14. Soares, C. (2008) Gas Turbines: A Handbook of Air, Land and Sea Applications. Butterworth-Heinemann.
  • 15. Stalder, J.P. & Sire, J. (2001) Salt Percolation Through Gas Turbine Air Filtration Systems and its Contribution to Total Contaminant Level. Proceedings of the International Joint Power Generation Conference, pp. 445–456, New Orleans, LA, USA, June 2001, JPGC2001/PWR-19148.
  • 16. Stalder, J.-P. & van Oosten, P. (1994) Compressor Washing Maintains Plant Performance and Reduces Cost of Energy Production. ASME Turbo Expo: Power for Land, Sea and Air, Volume 4: Heat Transfer; Electric Power; Industrial and Congeneration, doi: 10.1115/94-GT-436.
  • 17. Syverud, E., Bakken, L.E., Langnes, K. & Bjornås, F. (2003) Gas Turbine Operation Offshore – On-line Compressor Wash at Peak Load. ASME Turbo Expo: Power for Land, Sea and Air, Volume 4: Turbo Expo 2003, pp. 17–27, doi: 10.1115/GT2003-38071.
  • 18. Tarabrin, A.P., Schurovsky, V.A., Bodrov, A.I. & Stalder, J.P. (1998) Influence of Axial Compressor Fouling of Gas Turbine Unit Performance Based on Different Schemes and with Different Initial Parameters. ASME Turbo Expo: Power for Land, Sea and Air, Volume 4: Heat Transfer; Electric Power; Industrial and Congeneration, doi: 10.1115/98-GT416.
  • 19. Walsh, P.P. & Fletcher, P. (2004) Gas Turbine Performance. Blackwell Publishing.
  • 20. Yang, H. & Xu, H. (2014) The New Performance Calculation Method of Fouled Axial Flow Compressor. The Scientific World Journal 2014(9), 906151, doi: 10.1155/2014/906151.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f06efd3e-5100-447e-9c43-04cbba6fdbbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.