Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In machining up to 75% of the geometrical variations of work piece, features are caused by thermally induced deformations of machine components [1]. Since in dry cutting up to 80% of the thermal energy is stored in the chips [2], we expected a significant effect of these process-dependent heat sources on the machine accuracy. Based on preliminary simulation results, we systematically applied determined quantities of heated chips to a machine table to understand their impact on the temperature field. Temperature sensors where used to measure the temperature change on the tables surface and in the structure. Length measuring probes measured the corresponding deformations at 24 points distributed over the table. The measurements show a temperature change of 4 K at the surface and 3 K in the structure near the heat source after 6 minutes of exposure to 500°C chips. In this case, the impact on the temperature field is local but causes the bending of the table. We recorded 8 micron of thermo-elastic deformations. The results suggest that high-accuracy processes with large energy input, such as hard turning, require the heat induced into the machine structure by hot chips to be implemented into compensation methods and correction algorithms.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
31--42
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Institute of Mechatronic Engineering Dresden (IMD), TU Dresden, Germany
autor
- Institute of Mechatronic Engineering Dresden (IMD), TU Dresden, Germany
autor
- Institute of Mechatronic Engineering Dresden (IMD), TU Dresden, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Germany
autor
- Institute of Mechatronic Engineering Dresden (IMD), TU Dresden, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Germany
Bibliografia
- [1] MAYR J., JEDRZEJEWSKI J., UHLMANN E., DONMEZ M.A., KNAPP W., HÄRTIG F., et al., 2012, Thermal issues in machine tools, CIRP Annals – Manufacturing Technology, 61/2, 771–791.
- [2] DENKENA B., TÖNSHOFF H.K., 2011, Spanen – Grundlagen, VDI-Buch.
- [3] BRYAN J.B., 1990, International Status of thermal Error Research. CIRP Annals – Manufacturing Technology, 39/2, 645–656.
- [4] FISCHER H., 1970, Beitrag zur Untersuchung des thermischen Verhaltens von Bohr- und Fräsmaschinen, PhD Thesis, TU Berlin, 221.
- [5] MAYR J., GEBHARDT M., MASSOW B.B., WEIKERT S., WEGENER K., 2014, Cutting fluid influence on thermal behavior of 5-axis machine tools, 6th CIRP International Conference on High Performance Cutting, Procedia CIRP, 14, 395–400.
- [6] BLASER P., HERNANDEZ-BECERRO P., MAYR J., WIESNER M., WEGENER K., 2018, Thermal Errors of a Large 5-Axis Machine Tool Due to Cutting Fluid Influences – Evaluation with Thermal, Test Piece. Conference Paper, ETH Zurich Research Collection, 1–6.
- [7] MAYR J., BLASER P., KNAPP W., WEGENER K., 2016, Compensation of cutting fluid influences on five axis machine tools, The Proceeding of MTTRF Annual Meeting, 101–118.
- [8] KLOCKE F., EISENBLATTER G., 1997, Dry Cutting, ClRP Annals – Manufacturing Technology, 46/2, 519–526.
- [9] WEINERT K., INASAKI I., SUTHERLAND J.W., WAKABAYASHI T., 2004, Dry Machining and Minimum Quantity Lubrication, CIRP Annals – Manufacturing Technology, 53/2, 511–537.
- [10] PULS H., KLOCKE F., DÖBBELERA B., PENG B., 2016, Multiscale modeling of thermoelastic workpiece deformation in dry cutting, Procedia CIRP, 46, 27–30.
- [11] PABST R., 2008, Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung, PhD Thesis,., Forschungsberichte aus dem wbk Institut für Produktionstechnik, Universität Karlsruhe (TH), 145.
- [12] KLOCKE F., LUNG D., PULS H., 2013, FEM-Modelling of the thermal workpiece deformation in dry turning, Procedia CIRP, 8, 240–245.
- [13] MORAVEK M., BURIAN D., BRAJER J., VYROUBAL J., 2014, Milling tool deformation caused by heating during the cutting process, Journal of Machine Engineering, 14/2, 81–92.
- [14] HOREJS O., MARES M., HORNYCH J., 2015, Real-time compensation of machine tool thermal errors including cutting process, Journal of Machine Engineering, 15/3, 5–18.
- [15] WIELAND P., 2004, Ein Beitrag zur Gestaltung der Spanentsorgung bei der Trockenbearbeitung, PhD Thesis, Technischen Universität Chemnitz.
- [16] DAVIM J.P., 2011, Machining of hard materials, Springer-Verlag.
- [17] SILVA M. B., WALLBANK J., 1999, Cutting temperature: prediction and measurement methods – a review. Journal of Materials Processing Technology, 88/1–3, 195–202.
- [18] JUNGNICKEL G., GROSSMANN K., 2010, Simulation des Thermischen Verhaltens von Werkzeugmaschinen – Modellierung und Parametrierung, Selbstverlag IWM Dresden, ISBN 978-3-86780-172-0.
- [19] GROSSMANN K., JUNGNICKEL G., 2008, Thermische Modellierung von Prozesseinflüssen an spanenden Werkzeugmaschinen, Schriftenreihe Lehre – Forschung – Praxis, TU Dresden.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f06ae89f-2179-4950-be58-222d041d5d85