PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Bioactive ceramic coating solution for offshore floating wind farms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biofouling is a natural phenomenon that consists of the accumulation of living organisms on an artificial surface submerged or in contact with water like Offshore platforms. This study highlights the need for offshore floating wind farms structures to consider the choice of material used in offshore applications to minimize microbial-associated and corrosion problems. For this purpose, differences in the total of seawater biofouling attached on two coated paints and three ceramic coatings in carbon steel for offshore structures were evaluated and compared. All ceramic coatings were made of incorporating, by electrophoretic deposition, active ceramic particles against biofouling as copper, silver, zinc and titanium. This experiment consisted of testing ceramic coatings and conventional paints in a real environment with high biological activity and at the same time in a shallow marine environment for a period of 1 year, which provided positive comparisons with the standard system (ASTM-D3623) for using in protecting offshore marine structures.
Twórcy
autor
  • University of Cantabria, Santander, Spain
autor
  • University of Cantabria, Santander, Spain
autor
  • University of Cantabria, Santander, Spain
autor
  • University of Cantabria, Santander, Spain
Bibliografia
  • 1. Bao, Y., Gawne, D.T., Gao, J., Zhang, T., Cuenca, B.D., Alberdi, A.: Thermal-spray deposition of enamel on aluminium alloys. Surface and Coatings Technology. 232, 150–158 (2013). https://doi.org/10.1016/j.surfcoat.2013.04.065.
  • 2. Black, J.T., Kohser, R.A.: DeGarmo’s Materials and Processes in Manufacturing. Wiley (2019).
  • 3. Bolelli, G., Rauch, J., Cannillo, V., Killinger, A., Lusvarghi, L., Gadow, R.: Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) glass coatings. Materials Letters. 62, 17, 2772–2775 (2008). https://doi.org/10.1016/j.matlet.2008.01.049.
  • 4. Boullosa-Falces, D., García, S., Sanz, D., Trueba, A., Gomez-Solaetxe, M.A.: CUSUM chart method for continuous monitoring of antifouling treatment of tubular heat exchangers in open-loop cooling seawater systems. Biofouling. 36, 1, 73–85 (2020). https://doi.org/10.1080/08927014.2020.1715954.
  • 5. Carter, C.B., Norton, M.G.: Ceramic Materials. SpringerVerlag New York (2013).
  • 6. De Baere, K., Verstraelen, H., Rigo, P., Van Passel, S., Lenaerts, S., Potters, G.: Study on alternative approaches to corrosion protection of ballast tanks using an economic model. Marine Structures. 32, 1–17 (2013). https://doi.org/10.1016/j.marstruc.2013.02.003.
  • 7. Dhanak, M.R., Xiros, N.I. eds: Springer Handbook of Ocean Engineering. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-16649-0.
  • 8. Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I.: Thermal Spray Fundamentals. Springer US (2017).
  • 9. García, S., Trueba, A.: Influence of the Reynolds number on the thermal effectiveness of tubular heat exchanger subjected to electromagnetic field-based antifouling treatment in an open once-through seawater cooling system. Applied Thermal Engineering. 140, 531–541 (2018). https://doi.org/10.1016/j.applthermaleng.2018.05.069.
  • 10. García, S., Trueba, A., Boullosa-Falces, D., Islam, H., Guedes Soares, C.: Predicting ship frictional resistance due to biofouling using Reynolds-averaged NavierStokes simulations. Applied Ocean Research. 101, 102203 (2020). https://doi.org/10.1016/j.apor.2020.102203.
  • 11. Momber, A.: Corrosion and corrosion protection of support structures for offshore wind energy devices (OWEA). Materials and Corrosion. 62, 5, 391–404 (2011). https://doi.org/10.1002/maco.201005691.
  • 12. Momber, A.W., Plagemann, P., Stenzel, V.: Performance and integrity of protective coating systems for offshore wind power structures after three years under offshore site conditions. Renewable Energy. 74, 606–617 (2015). https://doi.org/10.1016/j.renene.2014.08.047.
  • 13. Price, S.J., Figueira, R.B.: Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives. Coatings. 7, 2, (2017). https://doi.org/10.3390/coatings7020025.
  • 14. Shiladitya, P.: Corrosion Control for Marine- and Land- Based Infrastructure Applications. In: Tucker, R.C., Jr. (ed.) Thermal Spray Technology. ASM International (2013). https://doi.org/10.31399/asm.hb.v05a.a0005709.
  • 15. Singh, R.: Corrosion Control for Offshore Structures. Gulf Professional Publishing (2015).
  • 16. Wahab, J.A., Ghazali, M.J., Baharin, A.F.S.: Microstructure and mechanical properties of plasma sprayed Al2O3 – 13%TiO2 Ceramic Coating. MATEC Web Conf. 87, (2017). https://doi.org/10.1051/matecconf/20178702027.
  • 17. Yebra, D.M., Rasmussen, S.N., Weinell, C., Pedersen, L.T.: Marine Fouling and Corrosion Protection for OffShore Ocean Energy Setups. Presented at the 3rd International Conference on Ocean Energy , Bilbao October 6 (2010).
  • 18. Zargiel, K.A., Swain, G.W.: Static vs dynamic settlement and adhesion of diatoms to ship hull coatings. Biofouling. 30, 1, 115–129 (2014). https://doi.org/10.1080/08927014.2013.847927.
  • 19. Zhang, Y.: Comparing the Robustness of Offshore Structures with Marine Deteriorations — A Fuzzy Approach. Advances in Structural Engineering. 18, 8, 1159–1171 (2015). https://doi.org/10.1260/1369-4332.18.8.1159.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f05eb8ff-970d-4b9f-bb0c-0806c0a5665e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.