PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determinants of environmental assessment of Polish individual wastewater treatment plants in a life cycle perspective

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Determinanty oceny środowiskowej krajowych indywidualnych oczyszczalni ścieków uwzględniając perspektywę cyklu życia
Języki publikacji
EN
Abstrakty
EN
The article presents results of an input-output data inventory and life cycle assessment (LCA) for individual wastewater treatment plants (IWWTPs), considering their whole life cycle, including the stage of construction, use and end-of-life. IWWTPs located in the area of a medium-sized town in Poland, were assessed from a systemic perspective. The research was conducted basing on actual data concerning performance of 304 individual wastewater treatment plants in Żory. Environmental assessment was conducted with ReCiPe and TRACI methods. Greenhouse gases (GHG) emission, eutrophication, fossil fuel and metal depletion were calculated. The LCA was conducted basing on ISO 14040 standard with SimaPro 8 software and Ecoinvent 3 database. The system boundary ranged from cradle to grave. It was shown that, at the construction stage, GHG emission depends on the amount of used cement, polyethylene, concrete, PVC and polypropylene. At the use stage, the GHG emission is determined by the sewage treatment technology and application of a bio-reactor in IWWTPs. At the construction stage, the fossil fuel depletion is determined by the amount of used polyethylene, PVC, cement, polypropylene and concrete; while the metal depletion is determined by the amount of used stainless steel, copper and cast iron. Data inventory and LCA of IWWTPs are presented for the fi rst time. Conclusions of the work may support decisions taken by local governments concerning wastewater management in their area and promote and support solutions of high ecological standards.
PL
W artykule przedstawiono wyniki inwentaryzacji danych oraz środowiskowej oceny cyklu życia (LCA) indywidualnych oczyszczalni ścieków (IWWTP), z uwzględnieniem całego ich cyklu życia, w tym etapu budowy, użytkowania i wycofania z eksploatacji. IWWTP zlokalizowane na terenie średniej wielkości miasta w Polsce, zostały ocenione z perspektywy cyklu życia. Wykazano, że na etapie budowy IWWTP emisja gazów cieplarnianych jest zależna od ilości użytego cementu, polietylenu, betonu, PCV i polipropylenu. Na etapie budowy zużycie paliw kopalnych zależy od ilości zużytego polietylenu, PCV, cementu, polipropylenu i betonu; natomiast zużycie metali zależy od ilości użytej stali nierdzewnej, miedzi i żeliwa. Na etapie użytkowania determinantami emisji gazów cieplarnianych są technologia oczyszczania ścieków i zastosowanie bioreaktora w IWWTP. Dane inwentaryzacyjne i analiza cyklu życia IWWTP są prezentowane po raz pierwszy w literaturze. Wnioski z pracy mogą służyć do podejmowania decyzji przez samorządy dotyczących gospodarki wodno-ściekowej na ich terenie oraz promowania i wspierania rozwiązań proekologicznych.
Rocznik
Strony
44--54
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Poland
  • Central Mining Institute, Poland
Bibliografia
  • 1. Bertanza, G., Baroni, P. & Canato, M. (2016). Ranking sewage sludge management strategies by means of Decision Support Systems: A case study, Resources, Conservation and Recycling, 110, pp. 1-15, DOI: 10.1016/j.resconrec.2016.03.011.
  • 2. Błażejewski, R. (2003). Sewerage of the village, Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Poznań, 11, pp. 346-351. (in Polish)
  • 3. Buonocore, E., Mellino, S., De Angelis, G., Liu, G. & Ulgiati, S. (2016). Life cycle assessment indicators of urban wastewater and sewage sludge treatment, Ecological Indicators, 94, pp. 13-23, DOI: 10.1016/j.ecolind.2016.04.047.
  • 4. Burchart-Korol, D., Zawartka, P. & Bondaruk, J. (2017a). Environmental assessment of wastewater treatment plant under Polish condition. Part 2, Life cycle assessment of wastewater treatment plant, Przemysł Chemiczny, 96, pp. 2247-2252, DOI: 10.15199/62.2017.11.6. (in Polish)
  • 5. Burchart-Korol, D., Zawartka, P., Bondaruk, J. & Kruczek, M. (2017b). Metal depletion assessment of wastewater treatment system based on life cycle analysis. In: METAL 2017, 26th International Conference on Metallurgy and Materials, TANGER Ltd., Ostrava, ISBN 978-80-87294-79-6, 2004-2010.
  • 6. Corominas, L., Foley, J., Guest, J.S., Hospido, A., Larsen, H.F., Morera, S. & Shaw, A. (2013). Life cycle assessment to wastewater treatment: State of the art, Water Research, 47, pp. 5480-5492, DOI: 10.1016/j.watres.2013.06.049.
  • 7. EPA (2013). Environmental Protection Agency U.S., TRACI method, (www.epa.gov (25.09.2018)).
  • 8. EUR-Lex (1991). Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment, (www.eur-lex.europa.eu (25.09.2018)).
  • 9. EUR-Lex (2014). Commission Delegated Regulation (EU) No 480/2014 of 3 march 2014, (www.eur-lex.europa.eu (15.08.2018)).
  • 10. Fuchs, V.J., Mihelcic, J.R. & Gierke, J.S. (2011). Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions, Water Research, 45, 5, pp. 2073-2081, DOI: 10.1016/j.watres.2010.12.021.
  • 11. Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J. & Van Zelm, R. (2013). ReCiPe 2008: A life cycle impact assessment method with comprises harmonised category indicators at the midpoint and the endpoint level, Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer.
  • 12. ISAP (2001). Dz.U. 2015, poz. 469, (www.isap.sejm.gov.pl (16.08.2018)). (in Polish)
  • 13. ISO 14040:2006 Environmental management - Life cycle assessment - Principles and framework.
  • 14. Leverenz, H.L., Tchobanoglous, G. & Darby, J.L. (2010). Report Evaluation of Greenhouses Gas Emission from Septic System, Water Environment Research Foundation, University of California, Davis 2010, ISBN: 978-1-84339-616-1/1-84339-616-5.
  • 15. Lopsik, K. (2013). Life cycle assessment of small-scale constructed wetland and extended aeration activated sludge wastewater treatment system, International Journal of Environmental Science and Technology, 10, pp. 1295-1308, DOI: 10.1007/s13762-012-0159-y.
  • 16. Lorenzo-Toja, Y., Vázquez-Rowe, I., Marín-Navarro, D., Crujeiras, R.M., Moreira, M.T. & Feijoo, G. (2018). Dynamic environmental efficiency assessment for wastewater treatment plants, The International Journal of Life Cycle Assessment, 23, pp. 357-367, DOI: 10.1007/s11367-017-1316-9.
  • 17. Lorenzo-Toja, Y., Vázquez-Rowe, I., Amores, M.J., Termes-Rifé, M., Marín-Navarro, D., Moreira, M.T. & Feijoo, G. (2016). Benchmarking wastewater treatment plants under an eco-efficiency perspective, Science of the Total Environment, 567, pp. 468-479, DOI: 10.1016/j.scitotenv.2016.05.110.
  • 18. Machado, A.P., Urbano, L., Brito, A.G., Janknecht, P., Salas, J.J. & Nogueira, R. (2007). Life cycle assessment of wastewater treatment options for small and decentralized communities, Water Science & Technology, 56, 3, pp. 15-22, DOI: 10.2166/wst.2007.497.
  • 19. Mannina, G., Ekama, G., Caniani, D., Cosenza, A., Esposito, G., Gori, R., Garrido-Baserba, M., Rosso, D. & Olsson, G. (2016). Greenhouse gases from wastewater treatment - A review of modelling tools, Science of the Total Environment, 551-552, pp. 254-270, DOI: 10.1016/j.scitotenv.2016.01.163.
  • 20. Mellino, S., Protano, G., Buonocore, E., De Angelis, G., Liu, G., Xu, L. & Ulgiati, S. (2015). Alternative options for sewage sludge treatment and process improvement through circular patterns: LCA-based case study and scenarios, Journal of Environmental Accounting and Management, 3, pp. 77-85, DOI: 10.5890/JEAM.2015.03.007.
  • 21. MPWiK Lublin (2016). Materials of the Municipal Water and Sewage Company in Lublin. (in Polish)
  • 22. Opher, T. & Friedler, E. (2016). Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse, Journal of Environmental Management, 182, pp. 464-476, DOI: 10.1016/j.jenvman.2016.07.080.
  • 23. PWiK Żory (2015). Own materials of the Water Supply and Sewage System Company in Żory. (in Polish)
  • 24. Rejman-Burzyńska, A., Krzemień, J., Krawczyk, P. & Burchart-Korol, D. (2013). Economic and environmental efficiency of production and energy use of biogas from sewage sludge: case study for Silesian Voivodship, Przemysł Chemiczny, 92, pp. 2123-2128. (in Polish)
  • 25. Thomas, M., Zdebik, D. & Białecka, B. (2018). Use of sodium trithiocarbonate for remove of chelated copper ions from industrial wastewater originating from the electroless copper plating process, Archives of Environmental Protection, 44, 2, pp. 32-42, DOI: 10.24425/119682.
  • 26. UM Żory (2016). Żory City Hall data. (in Polish)
  • 27. Yoshida, H., Christensen, T. & Scheutz, Ch. (2016). Life cycle assessment of sewage sludge management: A review, Waste Management & Research, 31, pp. 1083-1101, DOI: 10.1177/0734242X13504446.
  • 28. Zawartka, P. (2017). Determinants of the environmental life cycle assessment for the system of collection, transport and wastewater treatment, PhD Thesis, Central Mining Institute. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f05a5b65-218b-41ce-a16e-33aa81c0aedf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.