PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil Textures-Based Evaluation of Horton and Philip’s Infiltration Models for Equatorial Small Watersheds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The global database underscores Indonesia’s scant 0.47% global contribution, of which 7.7% is from humid tropical climates. However, existing infiltration studies have primarily focused on specific soil textures and limited research points, resulting in a lack of comprehensive data. This knowledge gap is particularly evident in the Papua region of Indonesia, which boasts many small watersheds with abundant water resources but limited hydrologic data, especially regarding infiltration rates. Previous studies indicated that Horton and Philip’s models excelled in equatorial regions but were limited in the number of soil textures and watersheds analysed or focused mainly on larger watersheds. Therefore, this study aimed to address this research gap by conducting a comprehensive analysis of the performance of the Horton and Philip’s models across different soil textures in small watersheds, using the Hydrologic Soil Group classification as a reference. A performance analysis was conducted to assess Horton and Philip’s performance using the Moriasi technique (based on R, RSR, and NSE best values). Field observations were conducted at 95 points in eleven small watersheds in Papua as representatives of equatorial small watersheds globally. Observations were suspended for 48 hours if rainfall occurred; thus, ten months were needed to finish the observation. The results of this study demonstrated that the Horton model performed exceptionally well for six of nine soil textures, whereas the Philip’s model showed excellent performance for five out of nine. The obtained research results were compared with similar studies from Ghana, Nigeria, and India, reinforcing the conclusion that globally, the Horton and Philip’s model effectively describes infiltration rates in equatorial small watersheds. Further research was recommended in equatorial small watersheds with sand and loamy sand soil textures, two of the nine soil textures that were not covered in the conducted study.
Rocznik
Strony
103--114
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Water Resources Engineering Doctoral Program, Brawijaya University, Malang 65145, Indonesia
  • Department of Civil Engineering, Muhammadiyah University of Sorong, 98400, Indonesia
autor
  • Water Resources Engineering Doctoral Program, Brawijaya University, Malang 65145, Indonesia
  • Water Resources Engineering Doctoral Program, Brawijaya University, Malang 65145, Indonesia
  • Water Resources Engineering Doctoral Program, Brawijaya University, Malang 65145, Indonesia
Bibliografia
  • 1. Albalasmeh A.A., Alghzawi M.Z., Gharaibeh M.A., Mohawesh O. 2022. Assessment of the effect of irrigation with treated wastewater on soil properties and on the performance of infiltration models. Water, 14(9), 1520. https://doi.org/10.3390/w14091520
  • 2. Atta-Darkwa T., Asare A., Amponsah W., Oppong E.D., Agbeshie A.A., Budu M., Larbi I., Akolgo G.A., Quaye D.N.D. 2022. Performance evaluation of infiltration models under different tillage operations in a tropical climate. Scientific African, 17, 1–13. https://doi.org/10.1016/j.sciaf.2022.e01318
  • 3. Ayu I.W., Prijono S., Soemarno S. 2013. Assessment of infiltration rate under different drylands types in Unter-Iwes subdistrict Sumbawa Besar, Indonesia. Journal of Natural Sciences Research, 3(10), 71-77.
  • 4. BSN. 2012. Indonesian national standard: 7752 2012: Procedures for measuring soil infiltration rates with double rings. BSN, Jakarta.
  • 5. Chow V.T., Maidment D.R., Mays L.W. 1998. Applied hydrology. McGraw-Hill, Singapore.
  • 6. Dagadu J., Nimbalkar P. 2012. Infiltration studies of different soils under different soil conditions and comparison of infiltration models with field data. International Journal of Advanced Engineering Technology, III(II), 154–157.
  • 7. Dahak A., Boutaghane H., Merabtene T. 2022. Parameter estimation and assessment of infiltration models for Madjez Ressoul Catchment, Algeria. Water, 14(8), 1185. https://doi.org/10.3390/w14081185
  • 8. Farida A., Rosalina F. 2022. Landslide danger level in the Klagison watershed, Sorong City using a geographic information system. Econews, 5(1), 1–6. https://doi.org/10.47826/econews.5.1.p.1-6
  • 9. Henry U.I., Ibrahim I.I., Habib L.I., Henry M.U. 2016. Evaluation of water infiltration equations on Fadama soils of Jos – North, Plateau State, Nigeria. Journal of Biology, Agriculture and Healthcare, 6(16), 25–32.
  • 10. Hillel D. 1973. Soil and water, physical principles and processes - Google Play Books. Academic Press, New York and London.
  • 11. Limantara L.M. 2018. Hydrological Engineering-Revised Edition. Andi Yogyakarta, Yogyakarta.
  • 12. Mishra S.K., Tyagi J.V., Singh V.P. 2003. Comparison of infiltration models. Hydrological Processes, 17(13), 2629–2652. https://doi.org/10.1002/hyp.1257
  • 13. Moriasi D., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. http://dx.doi.org/10.13031/2013.23153
  • 14. Ngadisih N., Suryatmojo H., Satriagasa M.C., Annisa M., Kumolo C. 2020. Comparison of three in- filtration models on agricultural and agroforestry land in the Merawu watershed, Banjarnegara. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem, 8(1), 20–32. https://doi.org/10.29303/jrpb.v8i1.157
  • 15. Oku E., Aiyelari A. 2011. Predictability of Philip and Kostiakov infiltration models under inceptisols in the humid forest zone, Nigeria. Agriculture and Natural Resources, 45(4), 594–602.
  • 16. Panahi M., Khosravi K., Ahmad S., Panahi S., Heddam S., Melesse A.M., Omidvar E., Lee C.W. 2021. Cumulative infiltration and infiltration rate prediction using optimized deep learning algorithms: A study in Western Iran. Journal of Hydrology: Regional Studies, 35, 1-19. https://doi.org/10.1016/j.ejrh.2021.100825
  • 17. Ponce V.M. 2014. EH, Chap. 03, reading, hydrologic measurements, engineering hydrology, principles and practices, second edition. San Diego State University.
  • 18. Quan Q.D. 2010. Win TR55 small watershed hydrology overview modelling single. https://slidetodoc.com/win-tr55-small-watershed-hydrology-overview-modeling-single/
  • 19. Radhika R., Firmansyah R., Hatmoko W. 2017. Computation of surface water availability in Indonesia based on satellite data. Jurnal Sumber Daya Air, 13(2), 115–130. https://doi.org/10.32679/jsda.v13i2.206
  • 20. Rahmati M., Weihermüller L., Vanderborght J., Pachepsky Y.A., Mao L., Sadeghi S.H., Moosavi N., Kheirfam H., Montzka C., Van Looy K., Toth B., Hazbavi Z., Al Yamani W., Albalasmeh A.A., Alghzawi M.Z., Angulo-Jaramillo R., Antonino A.C.D., Arampatzis G., Armindo R.A. et al. 2018. Development and analysis of the soil water infiltration global database. Earth System Science Data, 10(3), 1237–1263. https://doi.org/10.5194/essd-10-1237-2018
  • 21. Rahmati M., Latorre B., Moret-Fernández D., Lassabatere L., Talebian N., Miller D., Morbidelli R., Iovino M., Bagarello V., Neyshabouri M.R., Zhao Y., Vanderborght J., Weihermüller L., Jaramillo R.A., Or D., Th. van Genuchten M., Vereecken H. 2022. On infiltration and infiltration characteristic times. Water Resources Research, 58(5), 1–19. https://doi.org/10.1029/2021WR031600
  • 22. Razali N.M., Wah Y.B. 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.
  • 23. Ritawati S., Mawardi M., Goenadi S. 2012. Suitability Philips infiltration model for surface runoff prediction using curve number method. Agritech, 32(3), 331-339.
  • 24. Rubel F., Kottek M. 2010. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19(2), 135–141. https://doi.org/10.1127/0941-2948/2010/0430
  • 25. Ruth A., Kelechi I., Ijeoma D. 2015. Philip model capability to estimate infiltration for solis of Aba, Abia State. Journal of Earth Sciences and Geotechnical Engineering, 5(2), 1792–9660.
  • 26. Salifu A., Abagale F.K., Kranjac-Berisavljevic G. 2021. Estimation of infiltration models’ parameters using regression analysis in irrigation fields of Northern Ghana. Open Journal of Soil Science, 11, 164–176. https://doi.org/10.4236/ojss.2021.113009
  • 27. Sayama T., Araki R., Yamamoto K., Apip. 2021. Characteristics of soil and hillslope responses in humid tropical forests in Sumatra, Indonesia. Hydrological Research Letters, 15(2), 23–30. https://doi.org/10.3178/hrl.15.23
  • 28. Shiraki K., Tanaka N., Chatchai T., Suzuki M. 2017. Water budget and rainfall to runoff processes in a seasonal tropical watershed in northern Thailand. Hydrological Research Letters, 11(3), 149–154. https://doi.org/10.3178/hrl.11.149
  • 29. Strohmeier S. 2017. Soil water plant relationship. Integrated Water and Land Management Program (IWLMP) International Center for Agricultural Research in the Dry Areas (ICARDA) Amman, JORDAN. https://repo.mel.cgiar.org/handle/20.500.11766/10179
  • 30. Subramanya K. 2013: Engineering hydrology 4th edn. McGraw Hill Education, India.
  • 31. Sugiyono. 2007. Statistics for research. 11th edn. PT Alfabeta Bandung, Bandung.
  • 32. Thomas A.D., Ofosu A.E., Emmanuel A., De-Graft A.J., Ayine A.G., Asare A., Alexander A. 2020. Comparison and estimation of four infiltration models. Open Journal of Soil Science, 10(2), 45–57. https://doi.org/10.4236/ojss.2020.102003
  • 33. Tkachuk O., Yaruta Y., Shevchuk O. 2022. Assessment of Application Conditions of Infiltration Basins for Regulation of Urban Rainwater Drainage. Journal of Ecological Engineering, 23(2), 191–195. https://doi.org/10.12911/22998993/144718
  • 34. Uloma A. R., Samuel A. C., Kingsley I. K. 2014. Estimation of Kostiakov’s infiltration model parameters of some sandy loam soils of Ikwuano – Umuahia, Nigeria. Open Transactions on Geosciences, 1(1), 34–38. http://dx.doi.org/10.15764/GEOS.2014.01005
  • 35. Watershed Management Laboratory, G.M.U. 2018. Watersheds in the Papua Region – Water shed Conservation. https://konservasidas.fkt.ugm.ac.id/2018/05/11/das-di-wilayah-papua/
  • 36. Yamamoto E.M.S., Sayama T., Yamamoto K., Apip. 2020. Comparison of runoff generation methods for land use impact assessment using the SWAT model in humid tropics. Hydrological Research Letters, 14(2), 81–88. https://doi.org/10.3178/hrl.14.81
  • 37. Zakwan M. 2019. Comparative analysis of the novel infiltration model with other infiltration models. Water and Environment Journal, 33(4), 620–632. https://doi.org/10.1111/wej.12435
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0546155-5d1a-47b5-9631-09291a1c4164
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.