Identyfikatory
Warianty tytułu
Tribological research of cobalt alloys used as biomaterials
Języki publikacji
Abstrakty
Poniższe opracowanie zawiera informacje dotyczące stopów kobaltu stosowanych w stomatologii oraz medycynie. Praca zawiera przegląd literatury opisujący ogólne właściwości stopów kobaltu. Opisano także wpływ warunków wytwarzania i wykorzystywanych dodatków stopowych na strukturę oraz właściwości mechaniczne tych stopów. W opracowaniu umieszczona została metodyka przeprowadzonych badań oraz uzyskane wyniki. Do badań wybrane zostały dwa stopy na osnowie kobaltu Co-CrMo-W oraz Co-Cr-Ni-Mo. Pierwszy z nich wytworzony został techniką odlewniczą drugi natomiast wyniku obróbki plastycznej. Przeprowadzona została analiza składu chemicznego, a następnie badania tribologiczne in vitro zrealizowane na tribotesterze typu „ball-on-disc”. Przedstawiona została porównawcza charakterystyka tribologiczna tych stopów.
This study provides information about the cobalt alloys used in dentistry and medicine. The work includes a review of the literature describing the general properties of cobalt alloys. In addition it describes the impact of the manufacturing conditions and alloy additives used , on the structure and mechanical properties of these alloys. The research methodology and the results obtained has been presented in the study. Two cobalt-based alloys Co-CrMo-W and Co-Cr-Ni-Mo were selected for the tests. The first one was prepared with the use of casting technique whereas the second was obtained due to plastic forming. An analysis of the chemical composition and in vitro tribological tests with the use of tribotester of "ball-on-disc" type was conducted. Comparative tribological characteristics of these alloys has been presented.
Słowa kluczowe
Rocznik
Tom
Strony
17--32
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
- Politechnika Lubelska, Wydział Mechaniczny
autor
- Politechnika Lubelska, Wydział Mechaniczny, Katedra Inżynierii Materiałowej
autor
- Politechnika Lubelska, Wydział Mechaniczny
Bibliografia
- 1. J. Marciniak, M. Kaczmarek, A. Ziembowicz, Biomateriały w stomatologii. Wydawnictwo Politechniki Śląskiej, Gliwice, 2008.
- 2. L.A. Dobrzański , Ł. Reimann, C. Krawczyk, Effect of age hardening on corrosion resistance and hardness of CoCrMo alloys used in dental engineering, Archives of Materials Science and Engineering, Vol. 57/ Issue 1 (2012) 5-12.
- 3. L.A. Dobrzański, Ł. Reimann, Influence of Cr and Co on hardness and corrosion resistance CoCrMo alloys used on dentures, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 193-199.
- 4. B. Surowska, Kształtowanie składu chemicznego i struktury stopów Co-Cr-Ni-Mo jako biomateriałów. Wydawnictwo Uczelniane Politechniki Lubelskiej, ISBN 83-87270-46-6, Lublin 1997, 134 s.
- 5. H. Leda, Materiały inżynierskie w zastosowaniach biomedycznych. Wydawnictwo Politechniki Poznańskiej, Poznań, 2012.
- 6. J.V. Giacchi, C.N. Morando, O. Fornaro, H.A. Palacio, Microstructural characterization of as-cast biocompatible Co–Cr–Mo alloys, Materials Characterization, 62 (2011) 53-61.
- 7. M. Grądzka-Dahlke, J.R. Dąbrowski, B. Dąbrowski, Modification of mechanical properties of sintered implant materials on the base of Co–Cr–Mo alloy, Journal of Materials Processing Technology, 204 (2008) 199-205.
- 8. J. Escobedo, J. Méndez, D. Cortés, J. Gómez, M. Méndez, H. Mancha, Effect of nitrogen on the microstructure and mechanical properties of a CoCrMo alloy, Mater Des, 17 (1996) 79–83.
- 9. Z. Komorek, S. Jóźwiak, M. Kuchta, Wpływ warunków wytwarzania na właściwości mechaniczne stopu stomatologicznego Co-Cr-Mo-C, Archiwum Odlewnictwa, Vol. 6, No. 18 (2006) 279-282.
- 10. B.S. Becker, J.D. Bolton, M. Youseffi, Production of porous sintered Co-Cr-Mo alloys for possible surgical implants application, Powder Metalurgy, 3 (1995) 201-208.
- 11. J.R. Dąbrowski, Z. Oksiuta, Porowaty materiał implantacyjny z proszku stopu Vitalium, Inżynieria Materiałowa, 4 (2000) 174-179.
- 12. J.R. Dąbrowski, J. Sidun, Sz. Piszczatowski, J. Sterna, Porowate kompozyty ceramiczno-metaliczne na bazie stopu Co-Cr-Mo – potencjalne biomateriały na implanty kostne, Kompozyty, 2/4 (2002) 167-170.
- 13. E. Krasicka-Cydzik, Z. Okisiuta, J.R. Dąbrowski, Corrosion testing of sintered samples made of the Co-Cr-Mo alloy for surgical applications. Journal Materials Science: Materials in Medicine, 2005; 16: 197-202.
- 14. Cordey J., Biofunctionality and biomechanics of implant, (w:) Biomaterials-hard tissue repair and replacement, Elsevier Science Publ. 1992, 235-245.
- 15. Marciniak J., Biomateriały w chirurgii kostnej, Wydawnictwo Politechniki Śląskiej, Gliwice, 1992.
- 16. B. Henriques, Bond strength enhancement of metal-ceramic dental restorations by FGM design, Tese de Doutoramento Engenharia Mecânica, Universidade do Minho Escola de Engenharia, Minho, 2012. - różowa książka
- 17. J. Campbell, Castings: The new metallurgy of cast metals. 2nd edition. Ox-ford/GB: Elsevier Science & Technology; April 2003.
- 18. D.M. Stefanescu, Science and engineering of casting solidification. 2nd edition. USA: Springer US; 2009.
- 19. C. Montero Ocampo, M. Talavera, H. Lopez, Effect of alloy preheating on the mechanical properties of as-cast CoCrMoC alloys, Metall Mater Trans A , 30 (1999) 611–620.
- 20. Z. Górny, Odlewnicze stopy kobaltu, Instytut Odlewnictwa, Kraków, 2008
- 21. M. Podrez-Radziszewska, K. Haimann, W. Dudziński, M. Morawska-Sołtysik, Characteristic of intermetallic phases in cast dental CoCrMo alloy, Archives of Foundry Engineering, Vol. 10, Issue 3 (2010) 51-56.
- 22. J.E.P. Metcalf, J. Cawley, T.J. Band, Cobalt Chromium Molybdenum Metal-on-Metal Resurfacing Orthopaedic Hip Devices, Business Briefing: Medical Device Manufacturing & Technology, 2004, 1-7.
- 23. Yan Y., Neville A., Dowson D., Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments, Wear, Vol. 263 (7-12), (2007) 1417-1422.
- 24. C. Balagna, S. Spriano, M.G. Faga, Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance, Materials Science and Engineering C 32 (2012) 1868–1877
- 25. B. Surowska, Biomateriały metalowe oraz połączenia metal-ceramika w zastosowaniach stomatologicznych, Wydawnictwo Politechniki Lubelskiej, Lublin, 2009.
- 26. Z. Bojar, Analiza morfologii i składu chemicznego węglików w odlewniczych stopach kobaltu, Krzepniecie Metali i Stopów, 27/13 (1996) 85-92.
- 27. Z. Bojar, J. Korpikiewicz, Wpływ niklu na morfologię i skład chemiczny węgli-ków w odlewniczych stopach kobaltu, Krzepnięcie Metali i Stopów, 36/21 (1998) 159-166.
- 28. C.D. Opris, R. Liu, M.X. Yao, X.J. Wu. Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications. Mater Des 2007;28:581–91.
- 29. Ramírez LE, Castro M, Méndez M, Lacaze J, Herrrera M, Lesoult G. Precipitation path of secondary phases during solidification of the CoCrMoC alloy. Scripta Materialia, 2002;47:811–816.
- 30. Weeton JW, Clauss FJ. Effect of heat treatment upon microstructures microconstituents and hardness of a wrought cobalt-base alloy, Stellite 21. National Advisory Committee for Aeronautics, Technical Note 3107; March 1954.
- 31. Weeton JW, Signorelli RA. Effect of heat treatment upon microstructures microconstituents and hardness of a wrought cobalt-base alloy. Trans ASM 1955;47:815–45.
- 32. Silverman R, Arbiter W, Hodi F. Effect of sigma phase on Co–Cr–Mo base alloys. Trans ASM 1957;49:805–22.
- 33. Sims CT. Contemporary view of cobalt-base alloys. J Met 1969;21:27–42.
- 34. H.S. Dobbs, JLM. Robertson, Heat treatment of cast Co–Cr–Mo for orthopaedic implant use, J Mater Sci 1983;18:391–401.
- 35. K. Asgar, F.A. Peyton, Effect of casting conditions on some mechanical properties of cobalt-case alloys. J Dent Res 1961;40:73–86.
- 36. K. Rajan, J.B. Vander Sande, Room temperature strengthening mechanisms in a Co–Cr–Mo–C alloy. J Mater Sci 1982;17: 769–778.
- 37. C.T. Sims, W. Hagel, N. Stoloff, The Superalloys II: High temperature materials for aerospace and industrial power, 2nd edition. Wiley & Sons Inc.; 1987.
- 38. C. Montero Ocampo, A. Salinas, Effect of carbon content on the resistance to localized corrosion of as-cast cobalt-based alloys in an aqueous chloride solution, J Biomed Mater Res 1995; Vol. 29, Issue 4, 441–453.
- 39. M. Herrera Trejo, A. Espinoza, J. Méndez, M. Castro, J. López, J. Rendón, Effect of C content on the mechanical properties of solution treated as-cast ASTM F75 alloys, J Mater Sci Mater Med. 2005;16:607–611.
- 40. L.E. Ramírez Vidaurri, M. Castro Román, M. Herrera Trejo, C.V. García López, E. Almanza Casas, Cooling rate and carbon content effect on the fraction of secondary phases precipitate in as-cast microstructure of ASTM F75 alloy. J Mater Process Technol 2009;209:1681–1687.
- 41. T. Kilner, R.M. Pilliar, G.C. Weatherly, C. Alibert, Phase identification and incipient melting in a cast CoCr surgical implant alloy. J Biomed Mater Res 1982;16:63–79.
- 42. A.J. Clemow, B.L. Daniell, Solution treatment behavior of CoCrMo alloy. J Biomed Mater Res 1979;13:265–79.
- 43. H. Mancha, E. Carranza, J.I. Escalante, G. Mendoza, M. Méndez, F. Cepeda, et al. M23C6 carbide dissolution mechanisms during heat treatment of ASTM F75 implant alloys. Metall Mater Trans A 2001;32A:979–84.
- 44. N.S. Vandamme, L. Que, L.D.T. Topoleski, Carbide surface coating of Co–Cr–Mo implant alloys by a microwave plasma-assisted reaction. J Mater Sci 1999;34:3535-3521.
- 45. T. Narushima, S. Mineta, Y. Kurihara, K. Ueda, Precipitates in Biomedical CoCr Alloys, JOM, Vol. 65, No. 4 (2013) 489-504.
- 46. M. Pohl, O. Storz, Sigma phase in duplex-stainless steels, Z. Metallkd. 95 (2004)631–638.
- 47. J.M. Joubert, Crystal chemistry and Calphad modelling of the sigma phase, Prog. Mater. Sci. 53 (3) (2008) 528-583
- 48. P. Huang, R. Liu, X. J. Wu and M. X. Yao, Effects of molybdenum content and heat treatment on mechanical and tribological properties of a low-carbon Stellite alloy, Journal of Engineering Materials and Technology, 129(4) (2007), 523-529.
- 49. A. Karaali, K. Mirouh, S. Hamamda, P. Guiraldenq, Microstructural study of tungsten influence on CoCr alloys. Mater Sci Eng, A 2005;390:255–299.
- 50. L. Zhuang, E.W. Langer, Effects of alloy additions on the fatigue properties of cast Co-Cr–Mo alloy used for surgical implants. J Mater Sci 1990;25:683–689.
- 51. S. Mineta, S. Namba, T. Yoneda, K. Ueda, T. Narushima, Carbide formation and dissolution in biomedical Co-Cr-Mo alloys with different carbon contents during solution treatment. Metallurgical and Materials Transactions A, Vol. 41A (2010) 2010-2129.
- 52. M. Caudillo, M. Herrera-Trejo, M.R. Castro, E. Ramírez, C.R. González, and J.I. Juárez: J. Biomed. Mater. Res., 59 (2002) 378–385.
- 53. R.N.J. Taylor and R.B. Waterhouse: J. Mater. Sci., 18 (1983) 3265–3280.
- 54. L. Reimann, L.A. Dobrzański, Influence of the casting temperature on dental Co-base alloys properties, Archives of Materials Science and Engineering 60/1 (2013) 5-12.
- 55. Y. Yan, A. Neville, D. Dowson, S. Williams, Tribocorrosion in implants – as-sessing high carbon and low carbon Co–Cr–Mo alloys by in situ electrochemical measurements. Tribology International. 2006; 39: 1509–1517
- 56. M. Walczak, D. Pieniak, A.M. Niewczas, Effect of recasting on the useful properties CoCrMoW alloy. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 16, 2014, 330-336.
- 57. D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, N. Kurosaki, Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses. Biomaterials, 2003; 24: 1519–1524.
- 58. J. Geis-Gerstorfer, H. Weber, In vitro corrosion behaviour of four Ni–Cr dental alloys in lactic acid and sodium chloride solutions. Dental Materials 1987;3:289–295.
- 59. A. Igual-Muñoz, S. Mischler, Interactive effects of albumin and phosphate ions on the corrosion of a CoCrMo implant alloy, Journal of the Electrochemical Society, Vol. 154 (10), (2007) C562-C570.
- 60. M. Niinomi, Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33A, 2002, 477-486.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0539c36-8950-4d06-a776-e9a3395f05d2