PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interference between land and sea logistics systems. Multifunctional building system design towards autonomous integrated transport infrastructure

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research is focused on developing design theory towards efficient multifunctional facilities for logistics supply chains in the contemporary urban city structures. The development of modern systems based on autonomous transport creates new conditions for their management and generates an emerging need to define dedicated functional service structures. An important element of consideration also taken into account is the scenario for large-size unmanned facilities operation in the multifunctional port facility and its connections to power supply from renewable energy sources. Despite the high degree of complexity, modern transport solutions should be focused on optimizing the distribution time and trans-shipment time within the intermodal supply chain as well as provide ecological logistic solutions. Due to the large number of system components, the study presents a simplified database structure allowing for a comprehensive technological overview within the entire system.
Twórcy
autor
  • Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • 1. Abramowicz-Gerigk, T. :Investigations on standards for ship manoeuvring performance at slow speed in constrained space, in Proceedings of the 12th International Congress of the International Maritime Association of the Mediterranean, IMAM 2005 - Maritime Transportation and Exploitation of Ocean and Coastal Resources. Lisbon, pp. 3–7 (2005).
  • 2. Baker, J. : How should ports prepare for autonomous shipping? https://www.ship-technology.com/features/ports-autonomous-shipping/. Accessed 20 Jul 2022, (2018).
  • 3. Bellotti, D. et al. :Thermo-economic comparison of hydrogen and hydro-methane produced from hydroelectric energy for land transportation,International Journal of Hydrogen Energy, 40(6), pp. 2433–2444 (2015) doi: 10.1016/j.ijhydene.2014.12.066.
  • 4. Bessid. S., Zouari, A., Frikha, A., Benabdelhafid, A. : Smart Ports Design Features Analysis: A Systematic Literature Review (2020).
  • 5. Bish, E. K.: A multiple-crane-constrained scheduling problem in a container terminal, European Journal of Operational Research, 144(1), pp. 83–107 (2003). doi: 10.1016/S0377-2217(01)00382-4.
  • 6. Budiyanto, M. A. et al.: Evaluation of CO2 emissions and energy use with different container terminal layouts, Scientific Reports 2021 11:1, 11(1), pp. 1–14 (2021). doi: 10.1038/s41598-021-84958-4.
  • 7. Fiedler, R., Bosse, C., Gehlken, D., Brümmerstedt, K., Burmeister, H.-C. :Autonomous Vehicles’ Impact on Port Infrastructure Requirements (2019).
  • 8. Galkin, A. : Urban environment influence on distribution part of logistics systems. Archives of Transport 42:7–23 (2017). doi: 10.5604/01.3001.0010.0522.
  • 9. Gerigk, M.: Modeling of Combined Phenomena Affecting an AUV Stealth Vehicle, TransNav, 10(4), pp. 665–669 (2017).
  • 10. Gerigk, M. : Multi-Criteria Approach in Multifunctional Building Design Process. IOP Conference Series: Materials Science and Engineering 245. (2017). doi: 10.1088/1757-899X/245/5/052085.
  • 11. Gerigk, M.: Multi-criteria model in multifunctional building system design process, in 5th SGEM International Multidisciplinary Scientific Conferences on SOCIAL SCIENCES and ARTS SGEM2018, Urban Planning, Architecture and Design. Sofia, pp. 383–390 (2018). doi: 10.5593/sgemsocial2018/5.3/s21.049.
  • 12. Hofman, J.: Complex Trans: the global land transportation system, in Computers in Railways XIV: Railway Engineering Design and Optimization, pp. 387–399 (2014). doi: 10.2495/CR140321.
  • 13. Holzapfel, A., Kuhn, H. and Sternbeck, M. G.: Product allocation to different types of distribution center in retail logistics networks, European Journal of Operational Research, 264(3), pp. 948–966 (2018). Available at: https://www.sciencedirect.com/science/article/pii/S0377221716307494?casa_token=bWzFSSfpEwAAAAA:oZmI6AuKBZ8lJpSdNN9Xrye1Pk0Gc8M2I3fUIPOFNk7KMaMxwGBipD_IZnBEqaa25RngfvHngQ (Accessed: 13 May 2022).
  • 14. Hoyhtya, M., Huusko, J., Kiviranta, M., Solberg, K., Rokka, J. :Connectivity for autonomous ships: Architecture, use cases, and research challenges. In: 2017 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, pp 345–350 (2017).
  • 15. Kalajdžić, M. and Momčilović, N.: A STEP TOWARD THE PRELIMINARY DESIGN OF SEAGOING MULTI-PURPOSE CARGO VESSELS, Brodogradnja, 71(2), pp. 75–89 (2020). doi: 10.21278/brod71205.
  • 16. Knippers, J., Kropp, C., Menges, A., Sawodny, O., Weiskopf, D. :Integrative computational design and construction: Rethinking architecture digitally. Civil Engineering Design 3:123–135 (2021). doi: 10.1002/cend.202100027.
  • 17. Kosiek, J. et al.: Analysis of modern port technologies based on literature review, TransNav, 15(3), pp. 667–674 (2021).
  • 18. Meidutė, I.: Comparative analysis of the definitions of logistics centres, Transport, 20(3), pp. 106–110 (2005). doi: 10.1080/16484142.2005.9638005.
  • 19. Murawski, L., Opoka,S., Majewska, K., Majewska, K., Ostachowicz, W., Weintrit, A.: Investigations of Marine Safety Improvements by Structural Health Monitoring Systems, TransNav, 6(2), pp. 83–89 (2011).
  • 20. Nilsson, M., Van Hees, P., Frantzich, H., Andersson, B. : Analysis of fire scenarios in order to ascertain an acceptable safety level in multi-functional buildings. In: 9th International Conference on Performance-Based Codes and Fire Safety Design Methods. Hong Kong (2012).
  • 21. Porathe, T.: Human-automation interaction for autonomous ships: Decision support for remote operators, TransNav, 15(3), pp. 511–515 (2021).
  • 22. Rodrigue, J., Notteboom, T.: Challenges in the Maritime-Land Interface : Port Hinterlands and Regionalization (2006).
  • 23. Shcherbakov, V., Silkina, G.: Supply chain management open innovation: Virtual integration in the network logistics system. Journal of Open Innovation: Technology, Market, and Complexity 7:1–21 (2021). doi: 10.3390/joitmc7010054.
  • 24. Sohn, J. R. and Jung, C. M.: The size effect of a port on the container handling efficiency level and market share in internation transshipment flow, Maritime Policy and Management, 36(2), pp. 117–129 (2009). doi: 10.1080/03088830902868057.
  • Taraszkiewicz, A., Gerigk, M.: Safety-based approach in multifunctional building design. In: Nowakowski et Al.(Eds) (ed) Safety and Reliability: Methodology and Applications - Proceedings of the European Safety and Reliability Conference, ESREL 2014. CRC Press, London, pp 1749–1753 (2015).
  • 26. Ugé, C. and Hochgeschurz, S.: Learning to swim-how operational design parameters determine the grade of autonomy of ships, TransNav, 15(3), pp. 501–509 (2021).
  • 27. Weintrit, A., Neumann, T. and Formela, K.: Some Problems of the Offshore Wind Farms in Poland, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 6(4), pp. 459–465 (2012). Available at: http://www.transnav.eu/Article_Some_Problems_of_the_Offshore_Wind_,24,384.html.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f05232cd-9236-414d-aad5-36a31d1d12fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.