PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wind tunnel experiment of multi-mode arc sail device

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A ship’s wind energy utilization device with multi-mode arc-shaped sails is designed, which have different working modes for sail-assisting or wind power generation according to the ship’s navigation. The structural characteristics and working principles of this device are firstly described in this paper. Three sets of arc-shaped sails with different thickness (4.5 cm, 11.3 cm, 21.7 cm) were designed. Wind tunnel experiments were carried out in the respects of sail-assisting performance and wind-power generation to determine the best sail blade shape and to verify the energy-saving effect of this device. Experiments show that the sail with the smallest thickness (4.5 cm) has a better boosting effect than others, and the sail with the largest thickness (21.7 cm) has the best wind power generation performance. Considering the lateral force and the structural strength of the support, in the case of the comprehensive evaluation for the boosting and power generation performance, it is considered that the intermediate thickness (11.3 cm) is the best choice. The device has a good comprehensive energy utilization effect and has development and application value.
Rocznik
Tom
Strony
20--29
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Shanghai Maritime University 1550 Haigang Dadao, PuDong New Area 201306 Shanghai, China
autor
  • Shanghai Maritime University 1550 Haigang Dadao, PuDong New Area 201306 Shanghai, China
autor
  • Shanghai University of Engineering Science, China
Bibliografia
  • 1. T. C. Van, J. Ramirez, T. Rainey, Z. Ristovski, R. J. Brown, “Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions”, Transportation Research Part D: Transport and Environment, vol. 70, pp. 123–134, 2019. doi: 10.1016/j.trd.2019.04.001.
  • 2. T. Chou, V. Kosmas, M. Acciaro, K. Renken, “A comeback of wind power in shipping: An economic and operational review on the wind-assisted ship propulsion technology”, Sustainability, vol. 13, pp. 1880, 2021. doi: 10.3390/ su13041880.
  • 3. Y. Ling, X. Cai, “Exploitation and utilization of the wind power and its perspective in China”, Renewable and Sustainable Energy Reviews, vol. 16, pp. 2111–2117, 2012. doi: 10.1016/j.rser.2012.01.039.
  • 4. O. Ellabban, H. Abu-Rub, F. Blaabjerg, “Renewable Energy resources: Current status, future prospects and their enabling technology”, Renewable and Sustainable Energy Reviews, vol. 39, pp. 748–764, 2014. doi:10.1016/j.rser.2014.07.113.
  • 5. F. Yu, X. Li, F. Fan, S. Qiang, “Feasibility analysis of dualpurpose wind energy device on river-sea bulk carrier”, China Ship Repair, vol. 30, pp. 17–20, 2017. doi: 10.13352/j. issn.1001- 8328.2017.03.006.
  • 6. Z. Xiangming, H. Yihuai, W. Youcong, “Wind tunnel test on sails with different shape”, Journal of Shanghai Maritime University, vol. 31, pp. 28–31, 2010.
  • 7. F. Tillig, J. W. Ringsberg, “Design, operation and analysis of wind-assisted cargo ships”, Ocean Engineering, vol. 211, pp. 107603, 2020. doi: 10.1016/j.oceaneng.2020.107603.
  • 8. M. Pawłusik, R. Szłapczyński, A. Karczewski, “Optimising rig design for sailing yachts with evolutionary multi-objective algorithm”, Polish Maritime Research, vol. 27, no. 4, 2020. doi: 10.2478/pomr-2020-0064.
  • 9. D. Li, Y. Zhang, P. Li, J. Dai, G. Li, “Aerodynamic performance of a new double-flap wing sail”, Polish Maritime Research, vol. 26, pp. 61–68, 2019. doi: 10.2478/pomr-2019-0067.
  • 10. J. He, Y. Hu, J. J. Tang, S. Xue, “Research on sail aerodynamics performance and sail-assisted ship stability”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 146, pp. 81–89, 2015. doi: 10.1016/j.jweia.2015.08.005.
  • 11. Y. Hu, X. Zeng, S. Li, “Research on the aerodynamic characteristics of ellipse wing sail”. Advanced Materials Research, vol. 347–353, pp. 2249–2254, 2012. doi: 10.4028/ www.scientific.net/AMR.347-353.2249.
  • 12. Z. Xiangming, Z. Huawu, “Experimental study of the aerodynamics of sail in natural wind”, Polish Maritime Research, vol. 25, pp. 17–22, 2018. doi: 10.2478/ pomr-2018-0068.
  • 13. D. E. Elger, M. Bentin, M. Vahs, “Comparison of different methods for predicting the drift angle and rudder resistance by wind propulsion systems on ships”, Ocean Engineering, vol. 217, 108152, 2020. doi: 10.1016/j.oceaneng.2020.108152.
  • 14. A. Babarit, G. Clodic, S. Delvoye, “Exploitation of the faroffshore wind energy resource by fleets of energy ships – Part 1: Energy ship design and performance”, Wind Energy Science, vol. 5, pp. 839–853, 2020. doi: 10.5194/wes-5-839-2020.
  • 15. Q. Li, Y. Nihei, T. Nakashima, Y. Ikeda, “A study on the performance of cascade hard sails and sail-equipped vessels”, Ocean Engineering, vol. 98, pp. 23–31, 2015. doi: 10.1016/j.oceaneng.2015.02.005.
  • 16. Yaguang Technology Group Co., “20m-FRP tour boat Performance” [Online]. (http://en.ygkjgroup.com.). Accessed on July 5,2021,
  • 17. R. Hongying, H. Lianzhong, S. Peiting, L. Nan, “Comprehensive energy-saving and emission reduction potential of large sail-assisted ship”, Journal of Dalian Maritime University, vol. 36, pp. 27–30, 2010. doi: 10.16411/j. cnki.issn1006-7736.2010.01.016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f05171d2-a65c-4b8a-87df-e16ac51bdb20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.