PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical methods for constructing gestational age-related charts for fetal size and pregnancy dating using longitudinal data

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The assessment of fetal size and the accurate estimation of gestational age are of crucial importance for proper pregnancy management. The information is almost exclusively based on ultrasound measurements of fetal biometric parameters and the means for evaluating these measurements are age-related reference charts (centile charts) allowing interpretation of obtained fetal measurement in comparison with the expected average measurement in the reference population. The construction of such reference charts requires an appropriate statistical methodology. The most frequent method for the construction of fetal reference charts from cross-sectional data is the parametric approach with fractional polynomials regression functions for the mean and standard deviation of each fetal measurement. This article suggests how this method can be extended to longitudinal data using fractional polynomials in linear mixed effect regression. The presented approach includes maximum likelihood estimation for fitting first- and second-order fractional polynomial models, and multimodel inference using Akaike's information criterion and related tools as a suitable strategy for model selection. Finally, an example of the suggested approach is presented.
Twórcy
autor
  • Gennet, Centre for Fetal Medicine and Reproductive Genetics, Kostelní 9, 170 00 Praha 7, Czech Republic; Department of Gynecology and Obstetrics, Thomayer Hospital, Prague, Czech Republic
autor
  • The Czech Academy of Science, Institute of Computer Science, Prague, Czech Republic
autor
  • The Czech Academy of Science, Institute of Computer Science, Prague, Czech Republic; Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
autor
  • Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
Bibliografia
  • [1] Boulet SL, Salihu HM, Alexander GR. Mode of delivery and birth outcome of macrosomic infants. J Obstet Gynaecol 2004;24:622–9.
  • [2] Fang S. Management of preterm infants with intrauterine growth restriction. Early Hum Dev 2005;81:889–900.
  • [3] Hall MH, Carr-Hill RA. The significance of uncertain gestation for obstetric outcome. Br J Obstet Gynaecol 1985;92:452–60.
  • [4] Royston P, Sauerbrei W. Multivariable model-building: a pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. Chichester, England: John Wiley; 2008.
  • [5] Wright EM, Royston P. A comparison of statistical methods for age-related reference intervals. J R Stat Soc A 1997;160:47–69.
  • [6] Silverwood RJ, Cole TJ. Statistical methods for constructing gestational age-related reference intervals and centile charts for fetal size. Ultrasound Obstet Gynecol 2007;29:6–13.
  • [7] Hynek M. Approaches for constructing age-related reference intervals and centile charts for fetal size. Eur J Biomed Informatics 2010;6:43–52.
  • [8] Borghi E, Onis M, Garza C, et al. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. Stat Med 2006;25:247–65.
  • [9] Altman DG, Chitty LS. Design and analysis of studies to derive charts of fetal size. Ultrasound Obstet Gynecol 1993;3:378–84.
  • [10] Johnson W, Balakrishna N, Griffiths PL. Modeling physical growth using mixed effects models. Am J Phys Anthropol 2013;150(1):58–67.
  • [11] Villar J, Altman DG, Purwar M, et al. International Fetal and Newborn Growth Consortium for the 21st century. The objectives, design and implementation of the INTERGROWTH-21st Project. BJOG 2013;120(Suppl. 2):9–26.
  • [12] Ioannou C, Talbot K, Ohuma E, et al. Systematic review of methodology used in ultrasound studies aimed at creating charts of fetal size. BJOG 2012;119(12):1425–39.
  • [13] Altman DG, Ohuma EO. International Fetal and Newborn Growth Consortium for the 21st century. Statistical considerations for the development of prescriptive fetal and newborn growth standards in the INTERGROWTH-21st Project. BJOG 2013;120(Suppl. 2):71–6.
  • [14] Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. Appl Stat 1994;43:429–67.
  • [15] Altman DG. Construction of age-related reference centiles using absolute residuals. Stat Med 1993;12:917–24.
  • [16] Royston P, Wright EM. How to construct 'normal ranges' for fetal variables. Ultrasound Obstet Gynecol 1998;11:30–8.
  • [17] Aitkin MA. Modelling variance heterogenity in normal regression using GLIM. Appl Stat 1987;36:332–9.
  • [18] Mosteller F, Tukey J. Data analysis and regression: a second course. New York: Addison-Wesley; 1977.
  • [19] Long JD. Longitudinal data analysis for the behavioral sciences using R. Thousand Oaks, California: Sage; 2012.
  • [20] Chitty LS, Altman DG. Charts of fetal size: limb bones. BJOG 2002;109:919–29.
  • [21] Papageorghiou AT, Kennedy SH, Salomon LJ, et al. International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown-rump length in the first trimester of pregnancy. Ultrasound Obstet Gynecol 2014;44:641–8.
  • [22] Papageorghiou AT, Ohuma EO, Altman DG, et al. International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014;384(9946):869–79.
  • [23] Agresti A. Foundations of linear and generalized linear models. Hoboken: Wiley; 2015.
  • [24] Royston P, Wright EM. Goodness-of-fit statistics for age-specific reference intervals. Stat Med 2000;19:2943–62.
  • [25] D'Agostino RB, Belanger A, D'Agostino Jr RB. A suggestion for using powerful and informative tests of normality. Am Stat 1990;44:316–21.
  • [26] Sasieni P, Royston P, Cox NJ. Symmetric nearest neighbour linear smoothers. Stata J 2005;5:285.
  • [27] Friedman JH, Silverman BW. Flexible parsimonious smoothing and additive modeling. Technometrics 1989;31(1):3–21.
  • [28] Long J, Ryoo J. Using fractional polynomials to model nonlinear trends in longitudinal data. Br J Math Stat Psychol 2010;63:177–203.
  • [29] Fitzmaurice GM, Laird NM, Ware JH. Applied longitudinal analysis. New York: Wiley; 2004.
  • [30] Galecki A, Burzykowski T. Linear mixed-effects models using R a step-by-step approach. New York: Springer; 2013.
  • [31] Laird N, Ware J. Random-effects models for longitudinal data. Biometrics 1982;38:963–74.
  • [32] Burnham KP, Anderson DR. Model selection and multimodel inference. New York: Springer; 2002.
  • [33] Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 2004;33(2):261–304.
  • [34] Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 2011;65:23–35.
  • [35] Paulsen JS, Smith MM, Long JD, PREDICT HD investigators and Coordinators of the Huntington Study Group. Cognitive decline in prodromal Huntington: disease: implications for clinical trials. J Neurol Neurosurg Psychiatry 2013;84:1233–9.
  • [36] Leoni V, Long JD, Mills JA, et al. PREDICT-HD Study Group. 24Shydroxycholesterol correlation with markers of Huntington disease progression. Neurobiol Dis 2013;55:37–43.
  • [37] Burnham KP, Anderson DR. Kullback–Leibler information as a basis for strong inference in ecological studies. Wildl Res 2001;28:111–9.
  • [38] Akaike H. Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, editors. Proceedings of the 2nd International Symposium on Information Theory. Budapest, Hungary: Akademiai Kiado; 1973. p. 267–81.
  • [39] Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biometrika 1989;76:297–307.
  • [40] Liang H, Wu H, Zou G. A note on conditional AIC for linear mixed-effects models. Biometrica 2008;95:773–8.
  • [41] Vaida F, Blanchard S. Conditional Akaike information for mixed-effects model. Biometrica 2005;92:351–70.
  • [42] Link WA, Barker RJ. Model weights and the foundations of multimodel inference. Ecology 2006;87:2626–35.
  • [43] Kadane JB, Lazar NA. Methods and criteria for model selection. J Am Stat Assoc 2004;99:279–90.
  • [44] Villar J, Altman DG, Purwar M, Noble JA, Knight HE, Ruyan P, Cheikh IL, Barros FC, Lambert A, Papageorghiou AT, Carvalho M, Jaffer YA, Bertino E, Gravett MG, Bhutta ZA, Kennedy SH. International Fetal and Newborn Growth Consortium for the 21st Century. The objectives, design and implementation of the INTERGROWTH-21st Project. BJOG 2013;120(Suppl. 2):9–26.
  • [45] R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014, http://www.R-project.org/ [accessed 1 September 2017].
  • [46] Bates D, Maechler M, Bolker B, Walker S. lme4: linear mixed-effects models using Eigen and S4. R package version 1; 2014;1–7, http://CRAN.R-project.org/package=lme4/ [accessed 1 September 2017].
  • [47] Vonesh EF, Chinchilli VM. Linear and non-linear model for the analysis of repeated measurements. New York: Marcel Dekker; 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f04f4c81-9a68-4d0d-b124-a1de887b54ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.