PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Environmentally Friendly Adsorbent Using Oil Palm Boiler Ash, Bentonite and Titanium Dioxide Nanocomposite Materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the products derived from agricultural wastes as low-cost adsorbent materials to remove organic or inorganic contaminants would be ideal, as these materials are readily available in many countries. This study aimed to prepare environmentally friendly adsorbents made from nanocomposite OPBA / Bentonite / TiO2. The coprecipitation method was used in preparing OPBA, and CTAB surfactant was added in bentonite preparation. Meanwhile, the manufacture of TiO2 was carried out using the sol-gel method. Characterization was done by XRD, FTIR, SEM, and BET. The adsorbent spectra did not show a significant shift in absorption where the O-H bonds were becoming weaker due to the presence of TiO2 in the interlayer of bentonite. Another possibility is due to the influence of calcination and heating. The O-H groups of H2O are hydroxylated and dehydrated from within between layers. The formation of the composite OPBA/TiO2/Bentonite does not change the crystallinity of TiO2 significantly. This proves that there is no decrease in photocatalyst activity after the addition of OPBA and bentonite. The morphology of the whole sample has a flake-like structure that has pores. The addition of OPBA into Bentonite/TiO2 causes a decrease in the specific surface area of the sample.
Słowa kluczowe
Rocznik
Strony
75--82
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Universitas Negeri Medan, Jl. Williem Iskandar Pasar V Medan Estate, 2022, Medan, Indonesia
  • Department of Physics, Universitas Negeri Medan, Jl. Williem Iskandar Pasar V Medan Estate, 2022, Medan, Indonesia
autor
  • Department of Physics, Universitas Sumatera Utara, Jl. Dr. T. Mansur No. 9 Padang Bulan, Kec. Medan Baru, 20155, Medan, Indonesia
  • Department of Physics, Universitas Quality Berastagi, Desa Lau Gumba, 22153, Berastagi, Indonesia
Bibliografia
  • 1. Abdul Khalil, H.P.S., Marliana, M.M., Alshammari, T. 2011. Material properties of epoxy-reinforced biocomposites with lignin from empty fruit bunch as curing agent. BioResources. https://doi.org/10.15376/biores.6.4.5206-5223
  • 2. Basuki, K.T., Hasnowo, L.A., Jamayanti, E. 2019. Adsorption Of Uranium Simulation Waste Using Bentonite:Titanium Dioxide. Urania Jurnal Ilmiah Daur Bahan Bakar Nuklir. https://doi.org/10.17146/urania.2019.25.1.4527
  • 3. Bukit, B.F., Frida, E., Humaidi, S., Sinuhaji, P. 2022a. Preparation and characterization of CTAB surfactant modified TiO2 nanoparticles as antibacterial fabric coating material. Journal of Physics: Conference Series, 2165(1), 012022. https://doi.org/10.1088/1742-6596/2165/1/012022
  • 4. Bukit, B.F., Frida, E., Humaidi, S., Sinuhaji, P. 2022b. Selfcleaning and antibacterial activities of textiles using nanocomposite oil palm boiler ash (OPBA), TiO2 and chitosan as coating. South African Journal of Chemical Engineering, 41(February), 105–110. https://doi.org/10.1016/j.sajce.2022.05.007
  • 5. Bukit, B.F., Frida, E., Humaidi, S., Sinuhaji, P., Bukit, N. 2022. Optimization of Palm Oil Boiler Ash Biomass Waste as a Source of Silica with Various Preparation Methods, 23(8), 193–199.
  • 6. Bukit, N., Ginting, E.M., Frida, E., Bukit, B.F. 2021. Physical analysis of TiO2and bentonite nanocomposite as adsorbent materials. Reviews on Advanced Materials Science, 60(1), 912–920. https://doi.org/10.1515/rams-2021-0076
  • 7. Bukit, N., Ginting, E. M., Hutagalung, E.A., Sidebang, E., Frida, E., Bukit, B.F. 2019. Preparation and characterization of oil palm ash from boiler to nanoparticle. Reviews on Advanced Materials Science, 58(1), 195–200. https://doi.org/10.1515/rams-2019-0023
  • 8. Bukit, N., Ginting, E.M., Pardede, I.S., Frida, E., Bukit, B.F. 2018. Mechanical properties of composite thermoplastic hdpe / natural rubber and palm oil boiler ash as a filler. Journal of Physics: Conference Series, 1120(1). https://doi.org/10.1088/1742-6596/1120/1/012003
  • 9. Chun, H., Yizhong, W., Hongxiao, T. 2001. Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes. Applied Catalysis B: Environmental, 30(3–4), 277–285. https://doi.org/10.1016/S0926-3373(00)00237-X
  • 10. Đukić, A.B., Kumrić, K.R., Vukelić, N.S., Stojanović, Z.S., Stojmenović, M.D., Milošević, S.S., Matović, L.L. 2015. Influence of ageing of milled clay and its composite with TiO2on the heavy metal adsorption characteristics. Ceramics International, 41(3), 5129–5137. https://doi.org/10.1016/j.ceramint.2014.12.085
  • 11. Fatimah, I. 2012. Composite of TiO2-montmorillonite from indonesia and its photocatalytic properties in methylene blue and e.coli reduction. Journal of Materials and Environmental Science.
  • 12. Frida, E., Bukit, N., Bukit, F.R.A., Bukit, B.F. 2022. Preparation and characterization of Bentonite-OPBA nanocomposite as filler. Journal of Physics: Conference Series, 2165(1). https://doi.org/10.1088/1742-6596/2165/1/012023
  • 13. Frida, E., Rahmat, F., Bukit, A., Bukit, F. 2022. Analysis Structure and Morphology of Bentonite-Opba. 20, 117–125.
  • 14. Ginting, E.M., Bukit, N., Frida, E., Bukit, B.F. 2020. Microstructure and thermal properties of natural rubber compound with palm oil boilers ash for nanoparticle filler. Case Studies in Thermal Engineering, 17, 100575. https://doi.org/10.1016/j.csite.2019.100575
  • 15. Ginting, E.M., Bukit, N., Motlan, Saragih, M.T., Frida, E., Bukit, B.F. 2020. Analysis of natural rubber compounds with filler of Oil Palm Empty Bunches Powder and Carbon Black. Journal of Physics: Conference Series, 1428(1). https://doi.org/10.1088/1742-6596/1428/1/012024
  • 16. Ginting, E.M., Bukit, N., Muliani, Frida, E. 2017. Mechanical properties and mophology natural rubber blend with bentonit and carbon black. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/223/1/012003
  • 17. Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., Zhang, Y. 2017. Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266–276. https://doi.org/10.1016/j.matchemphys.2017.09.028
  • 18. Ibrahim, S.A., Sreekantan, S. 2011. Effect of pH on TiO2 nanoparticles via sol-gel method. Advanced Materials Research, 173. https://doi.org/10.4028/www.scientific.net/AMR.173.184
  • 19. Khanday, W.A., Asif, M., Hameed, B.H. 2017. Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2016.10.075
  • 20. Liu, C., Zhang, R., Wei, S., Wang, J., Liu, Y., Li, M., Liu, R. 2015. Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite. Fuel. https://doi.org/10.1016/j.fuel.2015.05.003
  • 21. Lubis, K., Frida, E., Sebayang, K., Sinuhaji, P., Humaidi, S., Fudholi, A. 2022. The development of a novel FM nanoadsorbent for heavy metal remediation in polluted water. South African Journal of Chemical Engineering, 39, 32–41. https://doi.org/10.1016/j.sajce.2021.11.006
  • 22. Manikam, M.K., Halim, A.A., Hanafiah, M.M. 2019. Pollutants removal from sewage wastewater using palm oil fuel ash. AIP Conference Proceedings. https://doi.org/10.1063/1.5111270
  • 23. Manikam, M.K., Halim, A.A., Hanafiah, M.M., Krishnamoorthy, R.R. 2019. Removal of ammonia nitrogen, nitrate, phosphorus and cod from sewage wastewater using palm oil boiler ash composite adsorbent. Desalination and Water Treatment. https://doi.org/10.5004/dwt.2019.23842
  • 24. Mirzapour, P., Kamyab Moghadas, B., Tamjidi, S., Esmaeili, H. 2021. Activated carbon/bentonite/Fe3O4 nanocomposite for treatment of wastewater containing Reactive Red 198. Separation Science and Technology (Philadelphia), 56(16), 2693–2707. https://doi.org/10.1080/01496395.2020.1843051
  • 25. Saraswati, A., Nugraha, I. 2014. Seminar Nasional Kimia Dan Montmorillonit-TiO2 Dan. Seminar Nasional Kimia Dan Pendidikan Kimia VI.
  • 26. Sirait, M., Bukit, N., Siregar, N. 2017. Preparation and characterization of natural bentonite in to nanoparticles by co-precipitation method. AIP Conference Proceedings, 1801. https://doi.org/10.1063/1.4973084
  • 27. Sirait, M., Gea, S., Bukit, N., Siregar, N., Sitorus, C. 2018. Synthesis of nanobentonite as heavy metal adsorbent with various solvents. Oriental Journal of Chemistry, 34(4), 1854–1857. https://doi.org/10.13005/ojc/3404020
  • 28. Sutrisno, B., Hidayat, A., Mufrodi, Z. 2016. Modifikasi Limbah Abu Layang menjadi Adsorben untuk Mengurangi Limbah Zat Warna pada Industri Tekstil. CHEMICA: Jurnal Teknik Kimia. https://doi.org/10.26555/chemica.v1i2.3571
  • 29. Toor, M., Jin, B., Dai, S., Vimonses, V. 2015. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2014.03.033
  • 30. Wang, F.Y., Wang, H., Ma, J.W. 2010. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2009.12.032
  • 31. Zhuang, W., Zhang, Y., He, L., An, R., Li, B., Ying, H., Wu, J., Chen, Y., Zhou, J., Lu, X. 2017. Facile synthesis of amino-functionalized mesoporous TiO2 microparticles for adenosine deaminase immobilization. Microporous and Mesoporous Materials, 239, 158–166. https://doi.org/10.1016/j.micromeso.2016.09.006
  • 32. Zuo, S., Ding, M., Tong, J., Feng, L., Qi, C. 2015. Study on the preparation and characterization of a titanium-pillared clay-supported CrCe catalyst and its application to the degradation of a low concentration of chlorobenzene. Applied Clay Science. https://doi.org/10.1016/j.clay.2014.12.033
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f04cc477-f5be-4627-a1b8-509c721df23a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.