PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D microgravity test-bed for the validation of space robot control algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The utilization of satellites equipped with robotic arms is one of the existing strategies for Active Debris Removal (ADR). Considering that the time intended for on-orbit capturing manoeuvres is strictly limited, any given space robot should possess a certain level of autonomy. This paper is about the control of on-orbit space robots and the testing of such objects in laboratory conditions. The Space Research Centre of the Polish Academy of Sciences (CBK PAN) possesses a planar air bearing microgravity simulator used for the testing of advanced control algorithms of space robots supported on air bearings. This paper presents recent upgrades to the testing facility. Firstly, the base of the space robot is now equipped with manoeuvre thrusters using compressed nitrogen and therefore allowing for position control of the entire system. Secondly, a signal from an external vision system, referencing the position and orientation of the robot’s parts is used by the control system for the closed loop control.
Twórcy
autor
  • Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18a str., 00-716 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25 str., 00-665 Warsaw, Poland
autor
  • Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18a str., 00-716 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25 str., 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25 str., 00-665 Warsaw, Poland
  • Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18a str., 00-716 Warsaw, Poland
  • Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18a str., 00-716 Warsaw, Poland
autor
  • Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18a str., 00-716 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25 str., 00-665 Warsaw, Poland
Bibliografia
  • [1] Barciński T., Lisowski J., Rybus T., Seweryn K.,“Controlled Zero Dynamics Feedback Linearization with Application to Free-Floating Redundant Orbital Manipulator”. In: 2013 IEEE American Control Conference, Washington DC, USA, 2013,1834–1839. DOI: 10.1109/ACC.2013.6580102.
  • [2] Biesbroeck R., “The e.Deorbit Study in the Concurrent Design Facility”, The CleanSpace: Workshop, Darmstadt, September 2012.
  • [3] Bonnal C., Ruault J., Desjean M., “Active Debris Removal: Recent Progress and Current Trends”, Acta Astronautica 85, 2013, 51–60. DOI: 10.1016/j.actaastro.2012.11.009.
  • [4] Botta E., Sharf I., Misra A., Teichmann M., “On the Simulation of Tether Nets for Space Debris Capture with Vortex Dynamics”, Acta Astronautica, 123, 2016, 91–102. DOI: 10.1016/j.actaastro.2016.02.012.
  • [5] Castronuovo M., “Active Space Debris Removal –A Preliminary Mission Analysis and Design”, Acta Astronautica, 69, 2011, 848–859. 10.1016/j.actaastro.2011.04.017.
  • [6] Clean Space, “e.Deorbit Implementation Plan”, ESA-TEC-SC-TN-2015-007, 2015.
  • [7] Dexler K., Nanosystems: Molecular Machinery, Manufacturing, and Computation, Wiley, 1998.
  • [8] Dubowsky S., Papadopoulos E., “The Kinematics, Dynamics and Control of Free-Flying and Free-Floating Space Robotic Systems”, IEEE Transaction on Robotics and Automation, vol. 9, no. 5, 1993, 531–543. DOI: 10.1109/70.258046.
  • [9] Dudziak R., Tuttle S., Barraclough S., “Harpoon Technology for the Active Removal of Space Debris”, Advances in Space Research, 56, 2015, 509–527. DOI: 10.1016/j.asr.2015.04.012.
  • [10] Dulęba I., Algorithms of Motion Planning for Nonholonomic Robots, Oficyna Wydawnicza Politechniki Wrocławskiej, Wroclaw 1998.
  • [11] European Space Agency, International Academy of Astronautics, “Position Paper on Space Debris Mitigation; Implementing Zero Debris Zones”, Noordwijk, 2006.
  • [12] Felicetti L. et al., “Design of Robotic Manipulators for Orbit Removal of Spent Launchers’ Stages”, Acta Astronautica, 119, 2016, 118–130. DOI: 10.1016/j.actaastro.2015.11.012.
  • [13] Forshaw J. et al., “RemoveDEBRIS: An In Orbit Active Debris Removal Demonstration Mission”, Acta Astronautica, 2016, 448–463. DOI: 10.1016/j.actaastro.2016.06.018.
  • [14] Hausmann G. et al., “e.Deorbit Mission: OHB Removal Concepts”. In: ASTRA 13th Symposium on Space Technologies in Robotics and Automation, The Netherlands, 2015.
  • [15] Henshaw C., “The DARPA Phoenix Spacecraft Servicing Program: Overview and Plans for Risk Reduction. International Symposium on Artificial Intelligence”, Robotics and Automation in Space (i-SAIRAS), Montreal, 2014.
  • [16] Hou L., Cai Y., Liu J., Hou Ch., “Variable Fidelity Robust Optimization of Pulsed Laser Orbital Debris Removal Under Epistemic Uncertainty”, Advances in Space Research, 57, 2016, 1698–1714. DOI: 10.1016/j.asr.2015.12.003
  • [17] Inter-Agency Space Debris Coordination Committee, “IADC Space Debris Mitigation Guidelines”, Rev.1, September 2007.
  • [18] Jarzębowska E., Pietrak K., “Constrained Mechanical Systems Modeling and Control: A Free-Floating Space Manipulator Case as a Multi-Constrained System”, Robotics and Autonomous Systems, 62, 2014, 1353–1360. DOI:10.1016/j.robot.2014.04.004.
  • [19] Junkins J. L., Schaub H., “An Instantaneous Eigenstructure Quasivelocity Formulation for Nonlinear Multibody Dynamics”, Journal of the Astronautical Sciences, vol. 45, no. 3, 1997, 279–295.
  • [20] Kessler D. J. et al., “The Kessler Syndrome: Implications to Future Space Operations”, Advances in the Astronautical Sciences, 137, no. 8, 2010.
  • [21] Kindracki J., Tur K., Paszkiewicz P., Mężyk Ł.,Boruc Ł., Wolański P., “Experimental Researchon Low-cost Cold Gas Propulsion for a Space Robot Platform”, Aerospace Science and Technology, 62, 2017, 148–157. DOI: 10.1016/j.ast.2016.12.001.
  • [22] Lindberg R.E., Longman R.W., Zedd M.F., “Kinematicand Dynamic Properties of an Elbow Manipulator Mounted on a Satellite”. In: Space Robotics: Dynamics and Control, Ed.: Y. Xu and T. Kanade, Springer, USA, 1993. DOI: 10.1007/978-1-4615-3588-1_1.
  • [23] Mężyk Ł., Paszkiewicz P., Kindracki J., Boruc Ł.,“Experimental Research on Hydrogen Peroxide Micro Thruster for Satellite Application”. In: Proceedings from the IX International Scientific Conference „Development Trends in Space PropulsionSystems”, Warsaw, Poland, 2015, 148–157, 10.1016/j.ast.2016.12.001.
  • [24] Nanos K., Papadopoulos E., “On the Use of Free-Floating Space Robots in the Presence of Angular Momentum”, Intelligent Service Robotics, vol. 4, no. 1, DOI: 2011, 3–15. 10.1109/AIM.2010.5695904.
  • [25] NASA Orbital Debris Quarterly News, “Increase in ISS Debris Avoidance Manoeuvres”, Vol. 16, issue 2, April 2012.
  • [26] NASA Procedural Requirements for Limiting Orbital Debris, NPR 8715_006A, 2009.
  • [27] Nishida S. et al., “Space Debris’ Removal System Using a Small Satellite”, Acta Astronautica 65, 95-102, 2009, 95–102. 10.1016/j.actaastro.2009.01.041
  • [28] Reintsema D. et al., “DEOS – the German Robotics Approach to Secure and De-Orbit. Malfunctioned Satellites from Low Earth Orbit”, International Symposium on Artificial Intelligence, Robotics and Automation I Space (i-SAIRAS), 2010.
  • [29] Retat I. et al., “Net Capture System; a Potential Orbital Space Debris Removal System”, 2nd European Workshop on Active Debris Removal, Paris, June 2012.
  • [30] Rybus T. et al., “New Planar Air-bearing Microgravity Simulator for Verification of Space Robotics Numerical Simulations and Control Algorithms”, 12th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA 2013), ESTEC, Noordwijk, The Netherlands, 2013.
  • [31] Rybus T., Seweryn K., “Manipulator Trajectories During Orbital Servicing Mission: Numerical Simulations and Experiments on Microgravity Simulator”, 6th European Conference for Aeronauticsand Space Sciences (EUCASS 2015),Kraków, Polska, 2015, 377–394.
  • [32] Rybus T., Seweryn K., “Planar Air-Bearing Microgravity Simulators: Review of Applications,Existing Solutions and Design Parameters”, Acta Astronautica 120, 2016, 239-259. 10.1016/j.actaastro.2015.12.018
  • [33] Rybus T., Seweryn K., Sasiadek J., “Application of Trajectory Optimization Method for a Space Manipulator with Four Degrees of Freedom”,11th AAIA Conference, 2016, 92–101.
  • [34] Rybus T., Seweryn K., Sasiadek J., “Control System for Free-Floating Space Manipulator Based Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N° 2 2017104 Articles on Nonlinear Model Predictive Control (NMPC)”,Journal of Intelligent and Robotic Systems, 2016,491-509. 10.1007/s10846-016-0396-2.
  • [35] Rybus, T., Barcinski, T., Lisowski, J., Seweryn, K. “Analyses of a Free-Floating Manipulator Control Scheme Based on the Fixed-Base Jacobian with Spacecraft Velocity Feedback” Sasiadek,J.Z. (ed.) Aerospace Robotics II, GeoPlanet: Earth and Planetary Sciences, Springer-Verlag, 2015,59–69.
  • [36] Scheper M., “e.Deorbit Phase B1”, Clean Space Industrial Days, ESTEC, Noorwijk, The Netherlands, 2016.
  • [37] Seweryn K. et al., “Design and Development of Two Manipulators as a Key Element of a SpaceRobot Testing Facility”, Archive of Mechanical Engineering, vol. LXII, no. 3, 2015, 377-394. DOI:10.1515/meceng-2015-0022.
  • [38] Seweryn K., „Dynamika manewru zbliżania satelitów i ich połączenia za pomocą manipulatora o więzach nieholonomicznych” (The Dynamics of maneuvering of satellites and their connectionwith a manipulator with non-holistic constraints), PhD thesis, Warsaw University of Technology, 2008. In Polish.
  • [39] Seweryn K., Banaszkiewicz M., “Optimization of the Trajectory of a General Free-Flying Manipulator During the Rendezvous Manoeuvre”, AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, Hawaii, USA, 2008. DOI: 10.2514/6.2008-7273.
  • [40] Shan M., Guo J., Gill E., “Review and Comparison of Active Space Debris Capturing and Removal Methods”, Progress in Aerospace Sciences, 80, 2016, 18–32. DOI: 10.1016/j.paerosci.2015.11.001.
  • [41] Soulard R., Quinn M., Tajima T., Mourou G., “ICAN: A Novel Laser Architecture for Space Debris Removal”, Acta Astronautica, 105, 2014, 192–200. DOI: 10.1016/j.actaastro.2014.09.004.
  • [42] Ulrich S., Sasiadek J., Barkana I., “Modeling and Direct Adaptive Control of a Flexible-Joint Manipulator”, J. Guid. Control. Dynam., vol. 35, no.1, 2012, 25–39. DOI: 10.2514/1.54083.
  • [43] Umetani Y., Yoshida K., “Resolved Motion Rate Control of Space Manipulators with GeneralizedJacobian Matrix”, IEEE Transactions on Robotics and Automation, vol. 5, no. 3, 1989, 303–314.DOI: 10.1007/978-1-4615-3588-1_7.
  • [44] United Nations Office for Outer Space Affairs, “Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space”, Vienna 2010.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f04c16bb-9edf-41e8-8ead-9c1d6057d9a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.