Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present paper is concerned with the problem of scattering of obliquely incident surface water wave train passing over a step bottom between the regions of finite and infinite depth. Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the physical parameters reflection and transmission coefficients in terms of integrals. Appropriate multi-term Galerkin approximations involving ultra spherical Gegenbauer polynomials are utilized to obtain very accurate numerical estimates for reflection and transmission coefficients. The numerical results are illustrated in tables.
Rocznik
Tom
Strony
327--338
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Department of Mathematics Prasannadeb Women's College Jalpaiguri-735101, West Bengal, INDIA
autor
- River Research Institute, West Bengal Haringhata Central Laboratory Mohanpur, Nadia, Pin-741246, INDIA
Bibliografia
- [1] Dean W.R. (1945): On the reflection of surface waves by a submerged plane barrier. – Proc. Camb. Phil. Soc., vol.41, pp.231-238.
- [2] Ursell F. (1947): The effect of a fixed barrier on surface waves in deep water. – Proc. Camb. Phil. Soc., vol.43, pp.374-382.
- [3] Evans D.V. (1970): Diffraction of water waves by a submerged vertical plate. – J. Fluid Mech., vol.40, pp.433-451.
- [4] Porter D. (1972): The transmission of surface waves through a gap in a vertical barrier. – Proc. Camb. Phil. Soc., vol.71, pp.411-422.
- [5] Mandal B.N. and Dolai D.P. (1994): Oblique water wave diffraction by thin vertical barriers in water of uniform finite depth. – Appl. Ocean Res., vol.16, pp.195-203.
- [6] Roseau M. (1976): Asymptotic wave theory. – North Holland, pp.311-347.
- [7] Kreisel G. (1949): Surface waves. – Quart. Appl. Math., vol.7, pp.21-44.
- [8] Fitz-Gerald G.F. (1976): The reflection of plane gravity waves traveling in water of variable depth. – Phil. Trans. Roy. Soc. Lond., vol.34, pp.49-89.
- [9] Hamilton J. (1977): Differential equations for long period gravity waves on fluid of rapidly varying depth. – J. Fluid Mech., vol.83, pp.289-310.
- [10] Newman J.N. (1965): Propagation of water waves over an infinite step. – J. Fluid Mech., vol.23, pp.399-415.
- [11] Miles J.W. (1967): Surface wave scattering matrix for a shelf. – J. Fluid Mech., vol.28, pp.755-767.
- [12] Mandal B.N. and Gayen, Rupanwita (2006): Water wave scattering by bottom undulations in the presence of a thin partially immersed barrier. – Appl. Ocean Res. vol.28, pp.113-119.
- [13] Dolai D.P. and Dolai P. (2010): Interface wave diffraction by bottom undulations in the presence of a thin plate submerged in lower fluid. – Int. J. Appl. Mech. and Engg. vol.15, pp.1017-1036.
- [14] Stoker J.J. (1957): WaterWwaves. – New York: Interscience.
- [15] Wehausen J.V. and Laiton E.V. (1960): Surface Waves. – Handbuch der Physik: Springer.
- [16] Bartholomeusz E.F. (1958): The reflection of long waves at a step. – Proc. Camb. Phil. Soc., vol.54, pp.106-118.
- [17] Evans D.V. and McIver P. (1984): Edge waves over a shelf: full linear theory. – J. Fluid Mech., vol.142, pp.79-95.
- [18] Havelock T.H. (1929): Forced surface waves on water. – Phil. Mag., vol.8, pp.569-576.
- [19] Kanoria M., Dolai D.P. and Mandal B.N. (1999): Water wave scattering by thick vertical barriers. – J. Eng. Math., vol.35, pp.361-384.
- [20] Dolai P. (2017): Oblique water wave diffraction by a step. – Int. J. Appl. Mech. and Engg., vol.22, pp.35-47.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f04c0ae2-e8f0-4bf4-b396-fcfb3bc65fc8