PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A unified representation of some starlike and convex harmonic functions with negative coefficients

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce a unified representation of starlike and convex harmonic functions with negative coefficients, related to uniformly starlike and uniformly convex analytic functions. We obtain extreme points, distortion bounds, convolution conditions and convex combinations for this family.
Słowa kluczowe
Rocznik
Strony
273--281
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
  • Damietta University Faculty of Science Department of Mathematics New Damietta 34517, Egypt
autor
  • Mansoura University Faculty of Science Department of Mathematics Mansoura 33516, Egypt
  • Zagazig University Faculty of Science Department of Mathematics Zagazig 44519, Egypt
autor
  • Zagazig University Faculty of Science Department of Mathematics Zagazig 44519, Egypt
Bibliografia
  • [1] R. Aghalary, Goodman-Salagean type harmonic univalent functions with varying arguments, Int. J. Math. Anal. 1 (2007) 22, 1051-1057.
  • [2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 3-25.
  • [3] J.M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A 52 (1998) 2, 57-66.
  • [4] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235 (1999), 470-477.
  • [5] S. Kanas, H.M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct. 9 (2000) 2, 121-132.
  • [6] S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.
  • [7] Y.C. Kim, J.M. Jahangiri, J.H. Choi, Certain convex harmonic functions, Int. J. Math. Math. Sci. 29 (2002) 8, 459-465.
  • [8] T. Rosy, B.A. Stephen, K.G. Subramanian, J.M. Jahangiri, Goodman-Rønning type harmonic univalent functions, Kyungpook Math. J. 41 (2001), 45-54.
  • [9] H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283-289.
  • [10] H. Silverman, E.M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math. 28 (1999), 275-284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f03f6e76-ba8b-4b2c-b03c-a2723a8d18a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.