PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of environmental media on carbon nanotubes and graphene nanoplatelets towards bacterial toxicity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Functional carbon-based nanomaterials have become important due to their unique combinations of chemical and physical properties, and also because of the increasing research efforts in various fi elds. A signifi cant gap in nanotechnology is the disregarding of physicochemical transformation under real conditions for the examination and comparison on the effect of carbon based nanomaterials. In this study, the behavior of some carbon based nanomaterials (multi-walled carbon nanotubes and graphene nanoplatelets) in environmental media (sea water, soil, and airborne fi ne particulate) were evaluated by using the infl uence on nanomaterial physicochemical properties (size, zeta potential, surface chemistry, morphology and sedimentation) and on the toxicity of bacterium (gram positive and gram negative bacteria) to contribute to their environmental hazard and risk assessment on the environment. The bacteria were exposed to the carbon based nanomaterials, and cultivated on nutrient agar plates including each environmental media, and then counted for the colony forming units. The physicochemical properties of the carbon based nanomaterials dispersed in these environmental media were also investigated. Our results indicated that the toxicity depended on the type of environmental media and their concentration, and the physicochemical properties of the carbon based nanomaterials changed when compared to the results obtained in controlled conditions.
Rocznik
Strony
85--98
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • Istanbul Aydin University, Turkey
autor
  • Istanbul Aydin University, Turkey
  • Istanbul Aydin University, Turkey
Bibliografia
  • 1. Afshinnia, K., Sikder, M., Cai, B. & Baalousha, M. (2017). Effect of nanomaterial and media physicochemical properties on Ag NM aggregation kinetics, Journal of Colloid and Interface Science, 487, pp. 192-200.
  • 2. Akhavan, O. & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 4, 10, pp. 5731-5736.
  • 3. Akhavan, O. & Ghaderi, E. (2012). Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner, Carbon, 50, pp. 1853-1860.
  • 4. Allegria, M., Perivoliotis, D.K., Bianchi, M.G., Chiu, M., Pagliaro, A., Koklioti, M.A., Trompeta, A.F.A., Bergamaschi, E., Bussolatia, O. & Charitidis, C.A. (2016). Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration, Toxicology Reports, 3, pp. 230-243.
  • 5. Aruoja, V., Pokhrel, S., Sihtmäe, M., Mortimer, M., Mädler L. & Kahru, A. (2015). Toxicity of 12 Metal-Based Nanoparticles to Algae, Bacteria and Protozoa, Environmental Science: Nano, 2, pp. 630-644.
  • 6. Aschberger, K., Johnston, H.J., Stone, V., Aitken, R.J., Hankin, S.M., Peters, S.A.K., Tran, C.L. & Christensen, F.M. (2010). Review of carbon nanotubes toxicity and exposure - Appraisal of human health risk assessment based on open literature, Critical Reviews in Toxicology, 40, 9, pp. 759-790.
  • 7. Baalousha, M. (2017). Effect of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics, NanoImpact, 6, pp. 55-68.
  • 8. Baek, YW. & An, Y.J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus, Science of the Total Environment, 409, pp. 1603-1608.
  • 9. Bai, Y, Park, I.S., Lee, S.J., Wen, P.S., Bae, T.S. & Lee, M.H. (2012). Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity, Colloids and Surfaces B: Biointerfaces. 89, pp. 101-107.
  • 10. Baysal, A., Saygin, H. & Ustabasi, G.S. (2018) Interaction of PM2.5 airborne particulates with ZnO and TiO2 nanoparticles and effect on bacteria, Environmental Monitoring and Assessment, 190, pp. 34.
  • 11. Bykkam, S., Venkateswara-Rao, K., Shilpa-Chakra, C.H. & Thunugunta, T. (2013). Synthesis and characterization of graphene oxide and its antimicrobial activity against Klebsiella and Staphylococus, International Journal of Advanced Biotechnology and Research, 4,1, pp. 1005-1009.
  • 12. Chatterjee, N., Yang, J., Kim, H.M., Jo, E., Kim, P.J., Choi, K. & Choi, J. (2014a). Potential Toxicity of Differential Functionalized Multiwalled Carbon Nanotubes (MWCNT) in Human Cell Line (BEAS2B) and Caenorhabditis elegans, Journal of Toxicology and Environmental Health, Part A, 77, pp. 1399-1408.
  • 13. Chatterjee, N., Eom, H.J. & Choi, J. (2014b). A systems toxicology approach to the surface functionality control of graphene-cell interactions, Biomaterials. 35, pp. 1109-1127.
  • 14. Combarros, R.G., Collado, S. & Díaz, M. (2016). Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida, Journal of Hazardous Materials, 310, pp. 246-252.
  • 15. Di Sotto, A., Chiaretti, M., Carru, G.A., Bellucci, S. & Mazzanti, G. (2009). Multi-walled carbon nanotubes: Lack of mutagenic activity in the bacterial reverse mutation assay, Toxicology Letters, 184, 3, pp. 192-197.
  • 16. Djurisic, A.B., Leung, Y.H., Ng, A.M.C Xiao, Xu, Y., Lee, P.K.H., Degger, N. & Wu, R.S.S. (2015). Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts, Small, 11(1), pp. 26-44.
  • 17. Efremova, L.V., Vasilchenko, A.S., Rakov, E.G. & Deryabin, D.G. (2015). Toxicity of graphene shells, graphene oxide, and graphene oxide paper evaluated with Escherichia coli, BioMed Research International, 2015, pp. 1-10.
  • 18. Figarol, A., Pourchez, J., Boudard, D., Forest, V., Akono, C., Tulliani, J.M., Lecompte, J.P., Cottier, M., Bernache-Assollant, D. & Grosseau, P. (2015). In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization, Toxicology in Vitro, 30, pp. 476-485.
  • 19. Faure, B., Salazar-Alvarez, G., Ahniyaz, A., Villaluenga, I., Berriozabal, G., De Miguel, Y.R. & Bergström, L. (2013). Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens, Science and Technology of Advanced Materials, 14(2), 023001.
  • 20. Gawande, M.B., Pandey, R.K. & Radha, J.V. (2012). Role of mixed metal oxides in catalysis science - Versatile applications in organic synthesis, Catalysis Science and Technology, 2(6), pp. 1113-1125.
  • 21. Guo, X. & Mei, N. (2014) Assessment of the toxic potential of graphene family nanomaterials, Journal of Food and Drug Analysis, 22, pp. 105-115.
  • 22. Jastrzebska, A.M., Kurtycz, P. & Olszyna, A.R. (2012). Recent advances in graphene family materials toxicity investigations, The Journal of Nanoparticle Research, 14, pp. 1320-1341.
  • 23. Jiang, W., Mashayekhi, H. & Xing, B. (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environmental Pollution, 157, pp. 1619-1625.
  • 24. Joo, S.H. & Zhao, D. (2017) Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review, Journal of Hazardous Materials, 22, pp. 29-47.
  • 25. Kang, S., Herzberg, M., Rodrigues, D.F. & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 24,13, pp 6409-6413.
  • 26. Kang, S., Mauter, S.M. & Elimelech, M. (2009). Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent, Environmental Science & Technology, 43, pp. 2648-2653.
  • 27. Khalid, P., Hussain, M.A., Suman, V.B. & Arun, A.B. (2016). Toxicology of carbon nanotubes - a review, International Journal of Applied Engineering Research, 11, 1, pp. 148-157.
  • 28. Krishnamoorthy, K., Veerapandian, M., Zhang, L.H., Yun, K. & Kim, S.J. (2012). Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation, The Journal of Physical Chemistry C, 116, 32, pp. 17280-17287.
  • 29. Krzyżewska, I., Kyzioł-Komosińska, J., Rosik-Dulewska, C., Czupioł, J. & Antoszczyszyn-Szpicka, P. (2016). Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements, Archives of Environmental Protection, 42,1, pp. 87-101.
  • 30. Lalwani, G., D’Agati, M., Khan, A.M. & Sitharaman, B. (2016). Toxicology of graphene-based nanomaterials, Advanced Drug Delivery Reviews, 105, pp. 109-144.
  • 31. Liu, S., Zeng, T.H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J. & Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 5, 9, pp. 6971-6980.
  • 32. Maurer-Jones, M.A., Gunsolus I.L., Murphy, C.J. & Haynes, C.L. (2013) Toxicity of engineered nanoparticles in the environment, Analytical Chemistry, 85(6), pp. 3036-3049.
  • 33. Metreveli, G., Frombold B., Seitz, F., Grün, A., Philippe, A., Rosenfeldt, R.R., Bundschuh, M. Schulz, R., Manz, W. & Schaumann, G.E. (2016). Impact of chemical composition of ecotoxicological test media on the stability and aggregation status of silver nanoparticles, Environmental Science: Nano, 3, pp. 418-433.
  • 34. Montagner, A., Bosi, S., Tenori, E., Bidussi, M., Alshatwi, A.A., Tretiach, M., Prato, M. & Syrgiannis, Z. (2017). Ecotoxicological effects of graphene-based materials, 2D Materials, 4, 1, 012001. doi: 10.1088/2053-1583/4/1/012001
  • 35. Oberdorst, E., Zhu, S., Blickley, T.M., McClellan-Green, P. & Haasch, M.L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms, Carbon, 44, pp. 1112-1120.
  • 36. Ou, L., Song, B., Liang, H., Liu, J., Feng, X., Deng, B., Sun, T. & Shao, L. (2016). Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms, Particle and Fibre Toxicology, 13, pp. 57.
  • 37. Park, S., Woodhall, J., Ma, G., Veinot, J.G.C., Cresser, M.S. & Boxall, A.B.A. (2013). Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment?, Nanotoxicology, 8(5), pp. 583-592.
  • 38. Peng, Y.H., Tsai, Y.C., Hsiung, C.E., Lin, Y.H. & Shih, Y. (2017) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples, Journal of Hazardous Materials, 322, pp. 348-356.
  • 39. Perez, S., la Farre, M. & Barcelo, D. (2009). Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment, Trends in Analytical Chemistry, 28, 6, pp. 820-832.
  • 40. Seabra, A.B., Paula, A.J., de Lima, R., Alves, O.L. & Durán, N. (2014). Nanotoxicity of graphene and graphene oxide, Chemical Research in Toxicology, 27, 2, pp. 159-168.
  • 41. Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B. & Carriere, M. (2009). Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Environmental Science & Technology, 43, 21, pp. 8423-8429.
  • 42. Singh, Z. (2016). Applications and toxicity of graphene family nanomaterials and their composites, Nanotechnology, Science and Applications, 9, pp. 15-28.
  • 43. Sperling, R.A. & Parak, W.J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles, Philosophical Transactions of the Royal Society A, 368(1915), pp. 1333-1383.
  • 44. Szigeti, T., Mihucz, V.G. Óvári, M., Baysal, A., Atilgan, S., Akman, S. & Záray, G. (2013). Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul, Microchemical Journal, 107, pp. 86-94.
  • 45. Wang, G., Qian, F. & Saltikov, C.W. (2011). Microbial reduction of graphene oxide by Shewanella, Nano Research, 4, pp. 563-570.
  • 46. Yang, K., Wan, J., Zhang, S., Tian, B., Zhang, Y. & Liu, Z. (2012). The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power, Biomaterials, 33, 7, pp. 2206-2214.
  • 47. Yang, K., Gong, H., Shi, X., Wan, J., Zhang, J. & Liu, Z. (2013). In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration, Biomaterials, 34, pp. 2787-2795.
  • 48. Zardini, H.Z., Amiri, A., Shanbedi, M., Maghrebi, M. & Baniadam, M. (2012). Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method, Colloids and Surfaces B: Biointerfaces, 92, pp. 196-202.
  • 49. Zardini, H.Z., Davarpanah, M., Shanbedi, M., Amiri, A., Maghrebi, M. & Ebrahimi, L. (2014). Microbial toxicity of ethanolamines-multiwalled carbon nanotubes, Journal of Biomedical Materials Research Part A, 102, 6, pp. 1774-1781.
  • 50. Zapór, L. (2016). Effects of silver nanoparticles of different sizes on cytotoxicity and oxygen metabolism disorders in both reproductive and respiratory system cells, Archives of Environmental Protection, 42, 4, pp. 32-47.
  • 51. Zhao, J., Wang, Z., White, J.C. & Xing, B. (2014). Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation, Environmental Science & Technology, 48, 17, pp. 9995-10009.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f03c8f37-d608-49d3-ba33-224afa0bf0c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.