PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methanol electrooxidation with Cu-B catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last few years alternative energy sources have been fast developing. One of these sources is fuel cell. Due to development of the renewable energy sources, the powering of fuel cells with bio-fuels is very important. The one of this fuel is methanol. The use of fuel cells on a large scale is mainly limited by the high cost of catalysts - mainly platinum. Elimination of Pt as catalyst would allow for wider commercial application of fuel cells. The paper presents a study of methanol electrooxidation on electrode with Cu-B alloy catalyst. Researches were done by the method of polarizing curves of electrooxidation of methanol in glass vessel. An aqueous solution of KOH was used as the electrolyte. Conducted measurements show that there is a possibility of electrooxidation of methanol on Cu-B catalyst. In any case, the process of electrooxidation of methanol occurs. A current density of about 10-20 mA/cm2 has been obtained for all concentrations of methanol and B in alloy. So, the work shows possibility to use Cu-B alloys as catalysts for fuel electrode of DMFC.
Rocznik
Tom
Strony
1483--1492
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Faculty of Natural Sciences and Technology Department of Process Engineering University of Opole Dmowskiego Street 7-9 45-365 Opole Poland
  • Faculty of Natural Sciences and Technology Department of Process Engineering University of Opole Dmowskiego Street 7-9 45-365 Opole Poland
Bibliografia
  • Armour, M. A. (2003). Hazarodous laboratory chemicals disposal guide. Boca Raton: CRC Press.
  • Appleby, A.J., Foulkes, F.R. (1988). Fuel cell handbook. New York: Van Nostrand Reinhold Co. Inc.
  • Asazawa, K., Yamada, K., Tanaka, H., Oka, A., Taniguchi, M., Kobayashi, T. (2007). A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles, Angewandte Chemie, 119(42), 8170-8173.
  • Barbira, F., Moltera, T., Daltonb L. (2005). Efficiency and weight trade-off analysis of regenerative fuel cells as energy storage for aerospace applications, International Journal of Hydrogen Energy, 30 (4) 351-357. DOI:10.1016/j.ijhydene.2004.08.004.
  • Bockris, J.O.M., and Reddy, A.K.N. (2000). Modern electrochemistry, New York: Kulwer Academic /Plenum Publishers.
  • Edited by Cheng, W-H., Kung, H.H. (1994). Methanol production and use, New York, Basel, Hong Kong: Marcel Dekker Inc.
  • Dong, Y., Steinberg, M. (1997). Hynol - An economical process for methanol production from biomass and natural gas with reduced CO2 emission, International Journal of Hydrogen Energy 22 (10-11) 971-977. DOI:10.1016/S0360-3199(96)00198-X.
  • Freeh, J.E., Pratt, J.W., Brouwer, J. (2004). Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications, ASME Turbo Expo 2004: Power for Land, Sea, and Air, vo. 7, Turbo Expo 2004, Paper No.GT2004-53616, 371- 379. DOI:10.1115/GT2004-53616.
  • Furukawa H., Yaghi O.Y., 2009, Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications, J. Am. Chem. Soc., 2009, 131 (25) s.8875-8883. DOI: 10.1021/ja9015765.
  • Grove, W. (1839). On the gas voltaic battery, Philosophical Magazine, 3 (14), 127-130. Hamnett A., (1997), Mechanism and electrocatalysis in the direct methanol fuel cell, Catalysis Today, 38 (4) s.445-457.
  • Hamelinck, C.N., Faaij, A.P.C., (2002). Future prospects for production of methanol and hydrogen from biomass, Journal of Power Sources 111 (1) 1-22. DOI:10.1016/S0378- 7753(02)00220-3.
  • Harrison, J. A., and Khan, Z. A. (1970). The oxidation of hydrazine on platinum in acid solution, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 28 (1) 131-138.
  • Hiranoa, A., Hon-Namia, K., Kunitoa, S., Hadab, M., Ogushib, Y., (1998). Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance, Catalysis Today 45 (1-4) 399-404. DOI:10.1016/ S0920-5861(98)00275-2.
  • Hoogers, G. (2003). Fuel cell technology handbook. Boca Raton: CRC Press.
  • Kelley, S.C., Deluga, G.A., Smyrl, W.H. (2000), A Miniature Methanol/Air Polymer Electrolyte Fuel Cell, Electrochem. Solid-State Lett. 3 (9) 407-409. DOI:10.1149/1.1391161.
  • Larminie, J., Dicks, A. (2005), Fuel cell system explained, John Wiley and Sons Ltd.
  • Milewski, J., and Lewandowski, J. (2013). Biofuels as fuels for high temperature fuel cells, Journal of Power Technologies, 93 (5), 347-353.
  • Nowicki, J., and Zięcina, K. (1989). Samoloty kosmiczne. Warszawa: Wydawnictwa Naukowo-Techniczne.
  • O’Hayre, R., Cha, S. W., Colella, W., and Prinz, F. B. (2005). Fuel cell fundamentals. Hoboken: John Wiley and Sons.
  • Redey, L. (1970). Tüzelőanyag-elemek. Budapest: Műszaki Könyvkiadó.
  • Rolison, D. R., Hagans, P. L., Swider, K. E., and Long, J. W. (1999). Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode catalysis: The importance of mixed electron/proton conductivity, Langmuir, 15(3), 774-779.
  • Steigerwalt, E. S., Deluga, G. A., Cliffel, D. E., and Lukehart, C. M. (2001). A Pt-Ru/ graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst, Journal of Physical Chemistry B, 105 (34), 8097-8101.
  • Stolten, D. (2010). Hydrogen and fuel cells. Fundamentals, technologies and applications. Weinheim: Wiley-VCH.
  • Twigg, M. V. (1989). Catalyst handbook. London: Wolfe Publishing Ltd..
  • Vielstich. W., (1969). Hydrazine fuel cell, Patent: US3442711A.
  • Wyman, C.E., Bain, R.L., Hinman, N.D., Stevens, D.J. (1993). Ethanol and methanol from cellulosic biomass, Washington: Island Press.
  • Włodarczyk B., Włodarczyk P.P., (2015a), Electricity production in microbial fuel cell with Cu-B alloy as catalyst of anode, QUAESTI-Virtual Multidisciplinary Conference, 3 (1) s.305-308. DOI:10.18638/quaesti.2015.3.1.211.
  • Włodarczyk B., Włodarczyk P.P., (2015b), Comparison of electrooxidation efficiency in microbial fuel cell with a steel catalyst and aeration in wastewater treatment (article in Polish, original title: Porównanie skuteczności elektroutleniania w mikrobiologicznym ogniwie paliwowym z katalizatorem stalowym i napowietrzania w oczyszczaniu ścieków), Engineering and Protection of Environment 18 (2) (2015) 189-198.
  • Włodarczyk, P.P., Włodarczyk, B. (2013). Powering fuel cell with crude oil, Journal of Power Technologies, 93 (5), 394-396.
  • Włodarczyk, P.P., Włodarczyk, B. (2014a). Electrooxidation of hydrazine with copper boride catalyst, Conference proceedings of 21st International Congress of Chemical and Process Engineering CHISA 2014, 1 (131).
  • Włodarczyk, P.P., Włodarczyk, B. (2014b). Possibility of using copper boride alloy as catalyst for oxygen electrode of fuel cell, Conference proceedings, 21st International Congress of Chemical and Process Engineering CHISA, P1 (2014) 134.
  • Włodarczyk, P. P., and Włodarczyk, B. (2015c). Electrooxidation of canola oil with Pt catalyst in acid electrolyte, Archives of Waste Management and Environmental Protection, 17 (2), 18-28.
  • Włodarczyk P.P., Włodarczyk B., (2015d), Possibility of fuel cell powering with grape seed oil, QUAESTI-Virtual Multidisciplinary Conference, 3 (1) s.300-304. DOI:10.18638/quaesti.2015.3.1.210.
  • Włodarczyk P.P., Włodarczyk B., (2015e), Ni-Co alloy as catalyst for fuel electrode of hydrazine fuel cell, China-USA Business Review, 14(5) s.269-279. DOI:10.17265/1537- 1514/2015.05.005.
  • Włodarczyk P.P., Włodarczyk B., (2015f), Possibility of using Ni-Co alloy as catalyst for oxygen electrode of fuel cell, Chinese Business Review, 14 (3) s.159-167. DOI:10.17265/1537-1506/2015.03.005.
  • Włodarczyk P.P., Włodarczyk B., (2016), Electrooxidation of sunflower oil in acid electrolyte, New Trends in Management and Production Engineering - Regional, Crossborder and Global Perspectives, Aachen: Shaker Verlag s.188-198.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f03b15fe-d79a-47b3-aa4b-de52ddcf706a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.