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planowanie czynności konserwacyjnych dla przeMysłowej 
sprężarki odśrodkowej w oparciu o analizę uszkodzeń

The industrial maintenance implementation requires to the behaviour system analysis and their components. In this work, we 
optimize the maintenance actions to eliminate failures in the inspected industrial process. Our purpose in this work is to improve 
the components reliability in gas compression system, by the planning of the maintenance actions based on failure analysis using 
the intervention optimization in industrial centrifugal compressor plant. The finality of this proposed approach is proved by the 
improvement of the reliability performances and by the availability of this oil installation.
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Obsługa urządzeń przemysłowych wymaga analizy zachowań układów i ich części składowych. W niniejszej pracy zoptymalizowa-
no czynności konserwacyjne tak, aby wyeliminować występowanie uszkodzeń w kontrolowanym procesie przemysłowym. Celem 
prezentowanej pracy było poprawienie niezawodności elementów układu sprężania gazu poprzez zaplanowanie czynności kon-
serwacyjnych w oparciu o analizę uszkodzeń z wykorzystaniem optymalizacji interwencji w przemysłowej sprężarce odśrodkowej. 
O skuteczności proponowanego podejścia świadczy poprawa parametrów niezawodności oraz gotowość omawianej instalacji 
olejowej.

Słowa kluczowe: Planowanie obsługi, niezawodność, gotowość, układ sprężania gazu, sprężarka odśrodkowa, 
optymalizacja, analiza uszkodzeń.

1. Introduction

Today the availability control in industrial systems, allow the in-
dustry to act on the production conformity, its costs of operations, 
competitiveness and commercial success. For correct exploitation, it 
is now not only offering a better plant supervision but also to achieve 
the optimum production with an implementation of fault diagnosis 
[5, 7, 9, 13, 16 and 21]. Indeed, the technological developments and 
the implementation of measurement tools of various parameters de-
fining the material state; systematic preventive maintenance remains 
especially for components, whose failure can cause major problems in 
reliability terms, maintainability, availability and security [1, 3, 6 and 
18]. In the oil and gas industry in the compression stations the turbo 
compressor provide the main function of the station, which requires 
these materials and especially during the period of large requests of 
gas, improved availability can be achieved by the organization of the 
maintenance actions schedule has made from the real data of site.

In this paper, we propose the use of the optimization techniques 
based on the number of intervention given by the failure rate, to im-
prove the maintenance actions planning of a gas compression sys-
tem. This gas pipeline installation, present in their operation a risk to 
passed in degraded mode and undergoes accidental defects. 

In several applications, there are more than a few techniques that 
can be used for increase maintenance actions [14, 15, 19, 23, 24, 25 
and 28]. By the basis of this work, we can confirm that the conditional 
maintenance optimizes the maintenance and especially to perform at 
the right time with the right cost. That after the proposed lineariza-
tion of the failure rates with an objective function, we evaluates the 

cost summary of maintenance according to the numbers of 
interventions of the different components responsible for the 
unavailability of our compression system.

2. Maintenance cost based on failure rate ana-
lysis

Today, the race for profitability no longer possible to ig-
nore the search for more efficient operation of its equipment 
[2, 4]. This is why we must constantly seek the best ways to 
combine technologies and applications to perfect the tools to 
make good decisions consistently in terms of maintenance 
and operations rate optimization with equipment availability 
[11, 27]. Conditional maintenance optimizes maintenance 
and especially to perform at the right time at the right cost. 
Indeed, the costs of a policy of routine maintenance are in-
compatible with the requirements of industrial business pro-
ductivity today. In addition, the downsizing of many serv-
ices, limited capacity to respond to incident, hence the need 
to anticipate failures using conditional preventive methods 
[8, 26].

To estimate the maintenance cost based on the estimated 

number of intervention in [ ]0,T , we use the equation (1), 
taking the random variable h as the number of failures in the 

time interval [ ]0,T , the model is as follows [12, 17]:
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where ( , )P T h  is the probability of failure in the interval [ ]0,T  and α 

is the expected value of the number of failures in the interval [ ]0,T : 
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T
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If there is a material composed mainly of sub assemblies whose 
failure rate rose linearly, we can write: 

 λ λi i it k t( ) = +  (3)

And the failure rate overall, considering the components in series in 
terms of reliability, can be written as follows: 

 λ λ( )t k ti
m

= +∑0
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With λ λ0
1

= ∑ i
m

Performing a repair at subsets i  decreases its failure rate to its 
initial value λi(t) during the time λi for the scheduled period T .

Using equation (2), the expected number of failures in the interval 

[ ]0,T  is written as follows: 

 α λ= +∑0

2

1 2
T k Tim

 (5)

We consider the structure and the periodicity of interventions 

planned maintenance system on a time interval [ ]0,T . Planned pe-

riods are designated by 1 2 3, , ,..., met∆ ∆ ∆ ∆  for a material whose m 
components require routine maintenance previously scheduled, so we 
can write:
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Where , ,..,i j p  is the number of planned interventions applied con-

secutively subsets 1.2 and 1m −  during the time mt . In this way the 
expression of the failure rate can be presented by

λ λ( , , ,..., ) ( , , ,..., )t t t t t i j pm1 2 3 1= . Denote 1 2 3, , ,..., mn n n et n  the 

amount of time periods whose durations are respectively 

1 2 3, , ,..., met∆ ∆ ∆ ∆  staggered period [ ]0,T  such as:
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It is not difficult to find the connections between the amount of 
time periods of duration 1 2 3, , ,..., met∆ ∆ ∆ ∆  and the amount realized 
on the [ ]0,T period of planned repairs respectively [10]:
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The expected number of failures in the time interval [ ]0,T  for the 
case of linear variation of failure rates over time and after the division 

of the time axis into intervals equal to 1∆ , and their summation is 
calculated as follows:
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The timing of the implementation of prophylactic repair is falling 
failure rates corresponding to their initial values λi but these jumps do 
not lower the failure rate to the value λ0 only when the realization of 
the general revision. 
The failure rate λ( , , ,..., )t i j p1  is equal to the expected number 
of failures [20, 22]. We can deduce that in the limiting case when 
performing an unlimited number of repair: the expected number of 
approaches to failure λ0T. After the integration of the equation (8), 
with some transformations we have:
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Posing
1 2 30, 0, 0.... 1p p p pmn n n et n= = = = , determining the value of the 

expected number of failures for the case
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The mathematical model based in   is given by:
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3. Industrial application

In oil industry, the turbochargers must ensure to increased avail-
ability and especially during the large gas demand to meet commit-
ments and contracts accorded with customers. On the maintenance 
plan and according to the manufacturer these machines require three 
types of revisions at 8000 h, 16000 h and at 32000 h often scheduled 
outside the period of wide application in the summer. With the appli-
cation of schedule revisions, it was found that these machines break 
down – even during the often-wide demand because some compo-
nents do not change automatically when revisions and cause excessive 
maintenance costs high not seen the failure prediction or forecasting 
the supply of replacement equipments. To minimize the exploitation 
risk, we address that is to strengthen the planning revisions by a sys-
tematic maintenance program based on maintenance cost components 
that greatly influence the availability of turbochargers. The practice 
has shown that 70% of the turbochargers defects are due: following

M1	 sheathing			β1=1,88		•	
M2	 Tightness	ring		β2=2,14•	
M3	 carring	bearing		β3=3,55•	
M4	 labyrinth	support		β4=2,09•	

To remedy this situation, we propose a maintenance strategy 
specific to this case and we determine the appropriate maintenance 
intervals. The figure 1, clearly show the trend on failure rates of com-
ponents considered in our examined turbochargers.

For the component 1, it is clear that it ages quickly compared to 
subset 2 and 4, and that these three elements have shape parameters 
β	between	(1.5	and	2.5),	which	corresponds	to	a	mode	of	fatigue	fail-
ure, which justifies their progressions almost linear. Regarding the 
component 4, at first he ages very slowly, and beyond (200 days), he 
begins to age more rapidly than the other component which justifies 
its failure mode is that the wear. It is clear that the failure rates of 
components 1, 2 and 4 (shown in figures 2, 3 and 4), we have a great 
linearity and especially during their active lifetimes.

It is clear that the failure rate of the three elements has a little 
change lointe linear regression, but errors during the active life and 
compensate	(R2	=	0.887),	we	can	say	that	the	linearity	can	ensure	prac-

Fig. 1. Failures rates variation of the considered components

Fig. 2. Failure rate of component 01

Fig. 3. Failure rate of component 02

Fig. 4. Failure rate of component 03
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tical results satisfactory. We can conclude that the maintenance opera-
tions and intervention of the examined turbochargers will be carried 
according to the flowing action plans, shown in figures 6, 7 and 8: 
According to the data sheet 1:

N4=	1,11	 T4=	900	Days	•	
N3=	1,5	 T3=	600		Days•	
N2=	1,33	 T2=		450	Days•	
N1=	1,5	 T1=	300	j•	

According to the data sheet 2:
N4=	1,25	 T4=	800	Days•	
N3=	1,6	 T3=	500		Days•	
N2=	1,25	 T2=		400	Days•	
N1=	1,6	 T1=	250	Days•	

According to the data sheet 3:
N4=	1		 T4=	1000	Days•	
N3=	1,33	 T3=	750	Days•	
N2=	2,3	 T2=		325	Days•	
N1=	1,3	 T1=	250	Days•	

Based on the feedback data, we estimate the laws of aging compo-
nents of our system examined. Given the results obtained were clas-
sified according to their components considered failure modes identi-
fied	based	on	estimated	values	of	shape	coefficient	β:	

Components 1,2 and 4 form the first group for which the mode •	
of failure is the most dominant fatigue according to the esti-
mated	 values	 		of	 the	 parameter	 β	 and	which	 are	 (1.88,	 2.14;	
2.09) respectively.
Component 3 is part of the second group, the failure mode is •	
the	most	dominant	wear	(β	=	3.55).

This has helped to develop approaches to maintenance optimi-
zation for each group separately and determine the optimal intervals 
to include additional repair the structure of the repair cycle recom-
mended by the manufacturer.

4. Conclusion

The maintenance control in industrial plants is based on the 
knowledge of their behavior, therefore the right choice of the cor-
rective action periodicity of maintenance. Between the good and the 
malfunction time of the system exploitation, there is a state in which 
can work as he can at any moment cause unscheduled action whose 
cost is often too high. In this work, we have determined the optimal 
timing of repair, to optimize the maintenance actions to eliminate fail-
ures in the inspected industrial centrifugal compressor. The finality of 
this proposed approach is proved by the improvement of the reliability 
performances and by the availability of this oil installation. 

After solving the equation of cost summary based on the linearity 
of the failure rates of the components of a centrifugal compressor, 
we have conclude that, the results are very satisfactory with the im-
plementation schedule of routine maintenance, as well as the supply 
of spare parts. In this paper and after a preset study reliability-one 
was interested in the most penalizing components in order to control 
the reliability of the turbo compressor from a few components. Illus-
trated work shows that the components whose failure mode is wear 
and from a certain period of normal operation; aging increases its ac-
celeration resulting in a drop in physico mechanical materials and that 
these components is the result of wear. For parts against deteriorating 
fatigue have a constant acceleration in their aging which results in a 
failure rate of linearity.

After the linearization of the failure rates with the proposed objec-
tive function, we have evaluates the cost summary of maintenance, 
according to the optimal timing of repair, in our examined compres-
sion system. We result that developed approach of maintenance ac-
tions planning makes it possible to increase the working time of the 
examined compression system. The developed approach of mainte-
nance actions planning allowing better performances in reliability of 
the examined gas compression system, at the moment of its exploita-
tion for its maintenance.
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