PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-voltage ride-through (LVRT) capability enhancement of DFIG-based wind farm by using bridge-type superconducting fault current limiter (BTSFCL)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Integration of large-scale wind power plants (WPPs) in power systems faces high short circuit current and low-voltage ridethrough (LVRT) challenges under fault condition. The use of superconducting fault current limiters (SFCLs) was found to be a promising and cost effective solution to solve these problems. This paper presents a theoretical analysis of Bridge-type SFCL (BTSFCL) performance supported by PSCAD/EMTDC based simulation to enhance the LVRT capability of doubly-fed induction generator (DFIG)-based WPPs. It suppresses the transient fault current without any delay time and prevents from instantaneous voltage sag in the connecting point at fault inception time. The main advantages of BTSFCL are: simplicity, high reliability and automatic operation under fault condition for enhancing the LVRT performance. The studied WPP is modeled based on an aggregated doubly-fed induction-generator (DFIG) wind turbine. Simulation results reveal that BTSFCL limits the transient short circuit current contribution of WPP and enhances the LVRT capability of the DFIG-based WPP. Also, the performance of BTSFCL is compared with the static synchronous compensator (STATCOM) for enhancing the LVRT capability.
Rocznik
Strony
245--253
Opis fizyczny
Bibliogr. 25 poz., rys., tab., tab.
Twórcy
  • Department of Electrical Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran
  • Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
  • Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
Bibliografia
  • [1] M. Tsili, S. Papathanassiou, A review of grid code technical requirements for wind farms, IET Renewable power generation 3 (3) (2009) 308–332.
  • [2] M. Mohseni, S. M. Islam, Review of international grid codes for wind power integration: Diversity, technology and a case for global standard, Renewable and Sustainable Energy Reviews 16 (6) (2012) 3876–3890.
  • [3] V. Gevorgian, E. Muljadi, Wind power plant short circuit current contribution for different fault and wind turbine topologies, Tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States) (2010).
  • [4] J. Morren, S. W. De Haan, Short-circuit current of wind turbines with Figure 22: Rotor current of DFIG with using BTSFCL during fault Figure 23: Rotor current of DFIG without using BTSFCL during fault doubly fed induction generator, IEEE TRANSACTIONS ON ENERGY CONVERSION EC 22 (1) (2007) 174.
  • [5] G. Pannell, D. J. Atkinson, B. Zahawi, Analytical study of grid-fault response of wind turbine doubly fed induction generator, IEEE Transactions on Energy Conversion 25 (4) (2010) 1081–1091.
  • [6] L. G. Meegahapola, T. Littler, D. Flynn, Decoupled-dfig fault ridethrough strategy for enhanced stability performance during grid faults, IEEE Transactions on Sustainable Energy 1 (3) (2010) 152–162.
  • [7] J. Lopez, P. Sanchis, X. Roboam, L. Marroyo, Dynamic behavior of the doubly fed induction generator during three-phase voltage dips, IEEE Transactions on Energy conversion 22 (3) (2007) 709–717.
  • [8] M. Firouzi, G. B. Gharehpetian, B. Mozafari, Power-flow control and short-circuit current limitation of wind farms using unified interphase power controller, IEEE Transactions on Power Delivery 32 (1) (2016) 62–71.
  • [9] K. Goweily, M. S. El Moursi, M. Abdel-Rahman, M. A. Badr, Voltage booster scheme for enhancing the fault ride-through of wind turbines, IET Power Electronics 8 (10) (2015) 1853–1863.
  • [10] L. Chen, C. Deng, F. Zheng, S. Li, Y. Liu, Y. Liao, Fault ride-through capability enhancement of dfig-based wind turbine with a flux-couplingtype sfcl employed at different locations, IEEE Transactions on Applied Superconductivity 25 (3) (2014) 1–5.
  • [11] R. Zhu, Z. Chen, X. Wu, F. Deng, Virtual damping flux-based lvrt control for dfig-based wind turbine, IEEE Transactions on Energy Conversion 30 (2) (2015) 714–725.
  • [12] R. Zhu, Z. Chen, X. Wu, F. Deng, Virtual damping flux-based lvrt control for dfig-based wind turbine, IEEE Transactions on Energy Conversion 30 (2) (2015) 714–725.
  • [13] G. Pannell, D. J. Atkinson, B. Zahawi, Minimum-threshold crowbar for a fault-ride-through grid-code-compliant dfig wind turbine, IEEE Trans-actions on Energy Conversion 25 (3) (2010) 750–759.
  • [14] L. Wang, D.-N. Truong, Stability enhancement of dfig-based offshore wind farm fed to a multi-machine system using a statcom, IEEE transactions on power systems 28 (3) (2013) 2882–2889.
  • [15] W. Qiao, G. K. Venayagamoorthy, R. G. Harley, Real-time implementation of a statcom on a wind farm equipped with doubly fed induction generators, IEEE transactions on industry applications 45 (1) (2009) 98–107.
  • [16] C. Wessels, F. Gebhardt, F. W. Fuchs, Fault ride-through of a dfig wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults, IEEE Transactions on Power Electronics 26 (3) (2010) 807–815.
  • [17] J. Yao, H. Li, Z. Chen, X. Xia, X. Chen, Q. Li, Y. Liao, Enhanced control of a dfig-based wind-power generation system with series gridside converter under unbalanced grid voltage conditions, IEEE Transactions on power electronics 28 (7) (2012) 3167–3181.
  • [18] M. Firouzi, G. B. Gharehpetian, S. B. Mozafari, Application of uipc to improve power system stability and lvrt capability of scig-based wind farms, IET Generation, Transmission & Distribution 11 (9) (2017) 2314–2322.
  • [19] N. K. Singh, R. M. Tumilty, G. M. Burt, C. G. Bright, C. C. Brozio, D. Roberts, A. C. Smith, M. Husband, System-level studies of a MgB2 superconducting fault-current limiter in an active distribution network, IEEE transactions on applied superconductivity 20 (2) (2010) 54–60.
  • [20] J. Kozak, M. Majka, S. Kozak, T. Janowski, Comparison of inductive and resistive sfcl, IEEE Transactions on Applied Superconductivity 23 (3) (2012) 5600604–5600604.
  • [21] M. Firouzi, G. Gharehpetian, M. Pishvaei, A dual-functional bridge type fcl to restore pcc voltage, International Journal of Electrical Power & Energy Systems 46 (2013) 49–55.
  • [22] M. Firouzi, G. B. Gharehpetian, M. Pishvaie, Thd reduction of pcc voltage by using bridge-type fault current limiter, International Transactions on Electrical Energy Systems 23 (5) (2013) 655–668.
  • [23] F. Mei, B. C. Pal, Modelling of doubly-fed induction generator for power system stability study, in: 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, IEEE, 2008, pp. 1–8.
  • [24] P. Anderson, A. Bose, Stability simulation of wind turbine systems, IEEE transactions on power apparatus and systems (12) (1983) 3791–3795.
  • [25] B. Adkins, R. G. Harley, The general theory of alternating current machines: application to practical problems, Springer, 2013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f027482c-5e8d-4c12-bfc2-c3b7f83048b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.