Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Friction stir welding developed in early 90’s is a refreshing approach to the joining of different kinds of metals. FSW has become increasingly popular and provides excellent alternative to conventional welding or riveting sheets of various metals. The paper present the results of research work on linear FSW joining magnesium alloys AZ31B of 0.5 mm in thickness. The study was conducted on properly adapted numerical controlled 3 axis milling machine using a own made tools and fastening device. The tool dimensions have been estimated in accordance with the algorithm shown in the literature [2]. All joints were made of end-to end (butt) configuration under different process parameters. The effect of selected technological parameters on the quality of the joint was analyzed. Produced butt joint have been subjected to a static tensile testing to identify mechanical features of the materials of joints compared to parent materials. Measurements of micro hardness HV in the plastically formed stir zone of joint and in the parent material have been carried out. Axial and radial welding forces in the joining region were recorded during the tests and their dependency from the welding parameters was studied . Based on results of strength tests the efficiency of joints for sheets of 0.5 mm in thicknesses oscillated up to 90% compared to the parent material. It has been found that for given parameters the correct, free of defects joints were obtained. The results suggests that FSW can be potentially applied to magnesium alloys.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
45--54
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Rzeszów University of Technology, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
autor
- Rzeszów University of Technology, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Bibliografia
- [1] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Dawes, Friction Stir Butt Welding, International Patent Application PCT/GB92/02203, GB Patent Application 9125978.8. 6 Dec. 1991 and US Patent 5,460,317.
- [2] Y. N. Zhang, X. Cao, S. Larose, P. Wanjara, Review of tools for friction stir welding and processing, Canadian Metallurgical Quarterly 51, 3 (2012).
- [3] P. Myśliwiec, R. E. Śliwa, Linear FSW Technology for Joining Thin Sheets of Aluminium and Magnesium Alloys, International Scientific Conference PRO-TECH-MA 2016, Bezmiechowa 2016.
- [4] P. Lacki, Z. Kucharczyk, R. E. Śliwa, T. Gałaczyński, Effect of tool shape on temperature field in friction stir spot welding Archives of Metallurgy and Materials 58, 597-601 (2013), DOI: 10.2478/amm-2013-0043.
- [5] P. Sevcel, V. Jaiganesh, Effect of Tool Shoulder Diamater to Plate Thickness Ratio on Mechanical Properties and Nugget Zone Characteristics During FSW of Dissimilar Mg Alloys, The Indian Institute of Metals 41-46 (2015).
- [6] A. Kouadri-Henni, L. Barrallier, Mechanical Properties, Macrostructure and Crystallographic Texture of Magnesium AZ91-D Alloy Welded by Friction Stir Welding (FSW), Metallurgical and Materials Transactions 45A, 2014.
- [7] B. T. Gibson, D. H. Lammlein, T. J. Prater, W. R. Longhurst, C. D. Cox, M. C. Ballun, K. J. Dharmaraj, G. E. Cook, A. M. Strauss, Friction stir welding: Process, automation, and control, Journal of Manufacturing Processes 16, 56-73 (2014).
- [8] S. Eslami, T. Ramos, P. J. Tavares, P.M.G.P. Moreira, Shoulder design developments for FSW lap joints of dissimilar polymers, Journal of Manufacturing Processes 20, 15-23 (2015).
- [9] A. Dobrane, G. Ayoub, B. Mansoor, R.F. Hamade, G. Kridil, R. Shabadi, A. Imed, Microstructural observations and tensile fracture behavior of FSW twin roll cast AZ31 Mg sheets, Material Science & Engineering A 649, 190-200 (2016).
- [10] G. Rambabu, D. Balaji Naik, C.H. Venkata Roa, K. Srinivasa Roa, G. Madhusudan Reddy, Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints, Defence Technology 11, 330-337 (2015).
- [11] A. Forcellese, M. Martarelli, M. Simoncini, Effect of proces parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys, Int. J. Adv. Manuf. Technol. 85, 595-604 (2016).
- [12] P. Sevvel, V. Jaiganesh, Characterization of mechanical properties and microstructural analysis od friction stir welding AZ31B Mg alloy thought optimized process parameters, Procedia Engineering 97, 741-751 (2014).
- [13] X. He, F. Gu, A. Ball, A review of numerical analysis of friction stir welding, Prog Mater Sci 65,1-66, 2014.
- [14] A. Astarita, A. Squillace, L. Carrino, Experimental study of the forces acting on the tool in the friction stir welding of AA 2024 T3 sheets, J. Mater. Eng. Perform. 23 (10), 3754-3761 (2014).
- [15] I. Galvao, C. Leitao, A. Loureiro, D. Rodrigues, Friction Stir Welding Very Thin Plates.
- [16] R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering R 50, 1-78 (2005).
- [17] TWI, Microstructure classification of friction stir welds, Avaible in: www.twi.co.uk/content/fswqual.html , 2010.
- [18] Sheng L, Xingyin Z, Bin L, Yunpeng W, Effects of Workpiece Size on Temperature Distribution during FSW of AZ31 Magnesium Alloys, Materials Science Forum, 734-741, 2016.
- [19] Z. Zhou, Y. Yue, S. Ji, Z. Li, L. Zhang, Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloys, Int. J. Adv. Manuf. Technol. 2016.
- [20] M. A. Mofid, A. A. Zadeh, F. M. Ghaini, C. H. Gur, Submerged Friction Stir Welding (SFSW) Underwater and Under Liquid Nitrogen: An Improve Method to Join Al Alloys to Mg Alloys, Metallurgical And Materials Transactions 43A (2012).
- [21] X. Cao, M. Jahazi, Mater. Des. 30, 2033-2042 (2009).
- [22] S. M. Chowdhury, D. L. Chen, S. D. Bhole, X. Cao, Tensile properties of friction stir welded magnesium alloy: Effect of pin tool thread orientation and weld pith, Materials Science and Engineering A 527, 606-607 (2010).
- [23] S. H. C. Park, Y. S. Sato, H. Kokawa, Scr. Mater. 49, 161-166 (2003).
- [24] L. Huetsch, K. Herzberg, J. dos Santos , N. Huber, A study on local thermal and strain phenomena of high-speed friction stir-processed Mg AZ31, Weld World 57, 515-521 (2013).
- [25] S. H. Chowdhury, D. L. Chen, S. D. Bhole, X. Cao, P. Wanjara, Friction Stir Welded AZ31 Magnesium Alloys: Microstructure, Texture, and Tensile Properties, The Minerals, Matals & Materials Society and ASM International 2012.
- [26] T. Balawender, R. E. Śliwa, T. Gałczyński, Zgrzewanie tarciowe z przemieszaniem blach ze stopu aluminium 2024, Hutnik, Wiadomości Hutnicze 8, 7, 450-455 (2014).
Uwagi
EN
1. Financial support of Structural Funds in the Operational Program Innovative Economy (IE OP) financed from the European Regional Development Funds Project “Modern material technologies in aerospace industry”, Nr POIG.01.01.02-00-015/08-00 is gratefully acknowledged.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0244357-b2e2-436d-b947-0e3ab320f156