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Summary

A vibration analysis method has been described, where time functions are represented in the “phase 
plane”; for free vibrations, the representations are classic phase portraits. In the case of vibrations 
forced with sinusoidal inputs, the representations are Lissajous figures and their stroboscopic 
expansions to “Poincaré maps”. For the purposes of presentation of the research method proposed, 
the analyses of free and forced vibrations of a system close to the motorcycle steering system have 
been described, with the system being modelled and simulated in the Matlab-Simulink environment 
and with the stick-slip processes being taken into account. The calculation results depict not only 
the essence of the method of analysing vibrations in the phase plane but also the impact of selected 
model parameters (in this case, related to freeplay and friction) and measurement disturbances on 
the representation results. The analysis method shown is a solution alternative to the classic spectral 
analyses. 

Keywords: torsional vibrations in the motorcycle steering system, vibration modelling and simulation, 
freeplay and friction effects, stick-slip, vibration analysis in the phase plane, model sensitivity analysis

1. Introduction

The torsional vibrations occurring in the steering system and steered wheel constitute an 
important problem for motorcycle users due to their impact on driving safety and comfort. 
This is evidenced by descriptions of vibrations of this kind observed in single-track vehi-
cles moving with high speeds; such vibrations often cause instability of vehicle motion 
and, in consequence, accidents. Thus, the torsional vibrations in the motorcycle steering 
system still constitute an open engineering problem and, for theoreticians and researchers 
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engaged in the dynamics of vehicle motion, they are an important and interesting scien-
tific challenge [6, 12].

The torsional vibrations in vehicle steering systems may result from various reasons. They 
may be forced directly, e.g. by wheel unbalance, or indirectly, e.g. by road surface irregu-
larities; in the latter case, they very strongly depend on vehicle speed, as the excitation 
frequency directly depends on the rotational velocity of vehicle wheel. The unforced (free) 
vibrations have their source in the dynamic structure of the steering system. Due to spring 
elements present in the system, this structure may happen to become, in certain condi-
tions, a vibration generator even at small momentary excitation (the shimmy effect). In 
many cases, the reasons for, and the effects of, the vibrations may be quite complex. On 
the one hand, the vibrations may be forced by various factors; on the other hand, free 
vibration processes may be encountered. In some specific circumstances, i.e. when the 
excitation frequency is identical with the natural system frequency (at a resonance), the 
system response to the excitation may be very strong.

Due to its mechanical structure, the motorcycle steering system is a dynamic one. 
Therefore, its torsional vibrations must be analysed in compliance with the general rules 
of the analysis of vibrations in dynamic systems. The vibrations in a dynamic system may 
be linear or non-linear, depending on the linear or non-linear nature of the mathematical 
model of the system.

When the dynamic model is linear, then, following the cessation of the transient process, 
the system response to a sinusoidal input is also sinusoidal, with an identical frequency 
at that, except that it is phase-shifted. The amplification factor and phase shift between 
the signals are directly determined by the system transmittance and they do not depend 
on the excitation amplitude; conversely, they depend on the frequency [7]. Hence, the key 
factors in the analysis of vibrations of a linear system are the frequency response charac-
teristics of the magnitude and phase angle, based on the system transmittance and in-
dependent of the input. Since the profile of any input may be defined by the superposition 
of its harmonic components, the frequency response characteristics constitute, in linear 
systems, the basic tool for the analysis of vibrations forced by any inputs. The vibrations in 
linear systems are also analysed, although less frequently, with the use of methods based 
on time functions visualized in the phase plane with the elimination of time. In the case of 
forced vibrations, especially when a sinusoidal excitation is applied to the system input, 
curves referred to as “Lissajous figures” are plotted. The analysis of vibrations in linear 
systems has already become a sort of “classics”, present in numerous works carried out 
in various fields of exact sciences and technology.

When the dynamic system is non-linear and a sinusoidal input is applied to it, the magni-
tude and phase responses depend not only on the frequency but also on the amplitude of 
the input [3]. If the input is freely shaped, the rule of superposition of the harmonic com-
ponents in the response curve does not hold. Therefore, the role of frequency response 
curves in such a case is far less important. For a non-linear system, the vibration analysis 
must be based on the analysis of time functions. This is the case in particular when vibra-
tions in a mechanical system are analysed with taking into account the stick-slip process-
es accompanying the dry friction effect or when the non-linearity of vibrations arises from 
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the presence of freeplay in spring joints [17]. Such a situation is also encountered when 
deterministic chaos breaks out in a non-linear system due to its singular structure, i.e. 
when the system response to a sinusoidal input with a specific amplitude and frequency 
is a random process with a wide spectrum [9]. This brings about interesting scientific 
challenges, i.e. questions how to utilize and process the time functions so that conclu-
sions about the non-linear vibrations observed in the system could be formulated on these 
grounds, or how to ascertain the occurrence of stick-slip processes, freeplay-related dis-
appearance of vibrations, or breaking out of deterministic chaos. A number of interesting 
proposals of research tools to analyse non-linear vibrations in the phase plane can be 
found in the literature dealing with this subject, e.g. visualizations in the form of Lissajous 
figures and their stroboscopic expansions to “Poincaré maps” [4].

This article shows possible applications of the representations in the phase plane for the 
analysis of vibrations in a motorcycle steering system, especially non-linear vibrations in 
the presence of freeplay and friction. The methods proposed have been presented with 
the use of computer simulation. Thanks to this, not only the impact of changes in pa-
rameters of the non-linear model but also the influence of measurement disturbances on 
changes in the representation forms may be investigated, which is a matter of consider-
able importance in the research practice.

2. Theoretical foundations of the vibration analysis  
in the phase plane

We are considering a model of a dynamic system (linear or non-linear) expressed by vector 
equations of state (1) and outputs (2):

When the system is autonomous, i.e. no inputs w(t) are applied to it, then the response 
functions y(t) resulting from non-zero initial conditions x(t0) are functions whose equiva-
lents in the vibration theory are free vibrations.

When the system is non-autonomous, but it is in the conditions of dynamic equilibrium at 
the initial instant, i.e. when (x (t0),w(t0))=0, then the response functions resulting from 
the application of non-zero inputs w(t) are functions whose equivalents in the vibration 
theory are forced vibrations.

The scalar representation yi(yk) is a “phase portrait” of the pair of variables yj(t) and yk(t) 
with time t having been eliminated. For dynamic systems with multiple inputs and outputs, 
multiple phase portraits may be talked about. In the case of a system with a single input 
and a single output, a single-phase portrait is dealt with.

When the output variables y(t) have been appropriately defined, the phase portraits may 
represent e.g. functions of the following type:
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 used in the analyses of processes in autonomous systems;

 used in the analyses of processes in non-autonomous systems.

The phase portraits are also sometimes used for determining equivalent non-linear char-
acteristic curves. As an example: in dry-friction systems, which are based on Coulomb 
characteristics of the  type, they are used for determining characteristic curves with 
hysteresis  [11].

The Lissajous figures are the phase portraits applicable to the cases where the independ-
ent variable in representation yj(yk) has the form of a periodically varying quantity. Most fre-
quently, such representations are used in the analysis of non-autonomous systems with 
a single input w(t) and a single output y(t), responding to a sinusoidal excitation Asin(ωt). 
Their geometrical forms y(w) depend on the properties of the specific dynamic system. 
The determining of the Lissajous figures is an element of the computing and measuring 
systems used, e.g. LabVIEW [14].

In the case of stationary linear systems, an analytical formula u(w) with time having been 
eliminated may be obtained through the use of simple mathematical “tricks”. Namely, ac-
cording to the properties of stationary linear systems:

                                              if            then                        (3), (4)

Hence, in turn, we obtain:

–  At a zero phase shift (for a static system, φ(ω) = 0, B(ω) = B), the following, in succes-
sion, may be obtained from (9):
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The resulting formula (12) is, in the (w, y) coordinate system, an equation of a straight line.

–  At a non-zero phase shift (φ(ω) > 0), formula (9) may be transformed into equation (13), 
which represents, in the (w, y) coordinate system, an ellipse with the centre at a point 
(0, 0), inclined at an angle of φ(ω). The ellipse aspect ratio depends on the amplitudes 
and phase shift; therefore, its values vary with ω.

Let us note that if φ(ω) = π/2 and B(ω) = A then equation (13) represents a circle.

A typical Lissajous figure for a stationary linear system has been shown in Fig. 1.

Fig. 1. Example of a Lissajous figure for a linear stationary dynamic system

In the case of non-stationary linear systems (which include parameters slowly changing 
with time), the corresponding Lissajous figures are closed curves evolving with time.

In the case of non-linear systems, no general analytical formula y(w) with time having 
been eliminated can be obtained. As is widely known, the response of such systems to 
a sinusoidal input is a polyharmonic time function (which includes sinusoidal components 
with frequencies different from the input frequency) or even a chaotic signal. The Lissajous 
figures may then have “strange” irregular forms of even forms varying with time, signifi-
cantly differing from the simple ellipses occurring for stationary linear systems. To confirm 
this fact, several examples of simple representations y(w) obtained for w(t) = sin(ωt) and 
y(t) = sin(kωt+φ) [10] have been presented in Fig. 2.
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Fig. 2. Lissajous figures for time functions w(t) = sin(ωt) and y(t) = sin(kωt+φ)

The figures most similar to those obtained for stationary linear systems are the curves 
plotted for quasi-linear and quasi-static systems, when the input is slowly changing with 
time and no significant phase shift takes place (Fig. 3).

Fig. 3. Example of a Lissajous figure having the form of a deformed ellipse

The most irregular Lissajous figures are obtained when the system response to a sinusoi-
dal input is a chaotic signal.

To detect singularities, especially chaos, in the functioning of non-linear dynamic systems, 
a solution referred to as “Poincaré maps” is used. Such maps are visual displays y(u) gen-
erated by sampling the signals under analysis with a frequency of the sinusoidal signal 
applied at the system input (which results in a stroboscopic effect). Thanks to this, a dot 
image showing the nature of the response is generated in plane (u, y). When a Poincaré 
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map consists of one point, this indicates that the response is also a sinusoid of the same 
frequency; when the map consists of two points, the response has two components, and 
so on. In a chaotic process, a cloud of points is obtained and the shape of such a cloud 
may be a valuable source of information about the process under analysis. An example 
of such a display has been shown in Fig. 4.

Fig. 4. Example of a Poincaré map for a system with chaotic dynamics

The Lissajous figures and their expansions to Poincaré maps may constitute effective 
tools for the analysis of vibrations in a system under examination; they may also be used 
for the identification of a model of the system. Obviously, deep exploration with the use of 
extensive simulation tests is required for every model structure.

3. Mathematical model of torsional vibrations  
in the motorcycle steering system

To examine the applicability of the Lissajous figures and Poincaré maps for the analysis of 
torsional vibrations in the motorcycle steering system, the model previously used in the 
work described in [18] was adopted. Such a single-body model reflects the most impor-
tant attributes of the steering system dynamics and simultaneously makes it possible to 
analyse torsional vibrations in the presence of “sharp” non-linearities arising from the free-
play and friction effects. However, the aspect of tyre-road interaction is disregarded in it 
because, if otherwise, the model would be much more complicated without any impact in 
this case on the analysis method. A concept of the modelling has been illustrated in Fig. 1.
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Fig. 5. A concept of the equivalent model used for testing the numerical procedures

The test model adopted corresponds to a situation where the handlebar is fixed. The tor-
sional vibration of the wheel may be caused by the application of a variable external mo-
ment of forces (e.g. due to wheel unbalance) or by twisting the system to move the wheel 
out of its angular position of equilibrium and then releasing it free. This equivalent steering 
system model adopted is actually a torsional pendulum where a twisted rigid inert ele-
ment (the wheel) is coupled with a weightless elastic shaft (linear elasticity) mounted with 
a freeplay in a housing. The shaft of the inert element is placed in a housing bearing. The 
bearing acts on the twisting motion through viscous friction forces (linear damping) and 
dry friction forces (dry kinetic and static friction, which causes the stick-slip phenomenon).

The mathematical model that describes the torsional vibrations of the wheel (nonlinear 
because of the impact of freeplay and friction) may have the form of a second-order dif-
ferential equation with variable structure [17, 18]:

The conditions  have been taken from the Coulomb friction model [1]. In 
numerical calculations, the controlling of variability of the structure by adopting the condi-
tions , where ε is a parameter of a “small” value, is also allowed, as 
it is in the Karnopp model [1].

Notation:

J − moment of inertia; μ − damping coefficient (for viscous friction); MTK0 − moment of dry 
kinetic friction forces; MTS0 − maximum value of the moment of dry static friction forces;  
k − stiffness coefficient; α0 − angular freeplay parameter; α − angle of torsion; Mw − moment 
of the external input force; t − time.
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Fig. 6. Geometrical interpretation of the luz(…) and tar(…) representations

The luz(…) / tar(…) representations make it possible to express analytically the character-
istic curves of stiffness (a curve with a “dead” zone caused by the freeplay) and kinetic 
friction force (a Coulomb curve, which is a superposition of a linear function and a pseudo-
function signum(…)) and, moreover, to express the stick-slip process in the neighbourhood 
of zero velocity [15, 16, 17].

The torsional vibrations of the pendulum may be simulated with excitation exclusively 
coming from non-zero initial conditions (it would be then Mw(t) = 0) or with preset exter-
nal excitation Mw(t) (with zero initial conditions in this case). The excitation coming from 
non-zero initial conditions leads to a situation where dry static friction develops and the 
motion is blocked (with the velocity being constant and equal to zero and the angular posi-
tion remaining unchanged). The external excitation Mw(t) = Mw0sin(ωt) will make it possible 
to examine the applicability of the Lissajous figures and Poincaré maps for the vibration 
analysis per se as well as for the identification of unknown model parameters based on 
actual vibration records. For the simulated curves to be as close as possible to the curves 
actually obtained from measurements carried out on a real object, curves disturbed by 
noise will also be examined.

Let us note that in the absence of freeplay (α0 = 0) and dry friction (MTK0 = MTS0 = 0), the 
non-linear equation (14) becomes a linear one:

When equation (15) is subjected to the Laplace transformation at zero initial conditions, an 
operator equation (16) with transmittance (17) is obtained:

The following parameters depending on system parameters can be discerned in the trans-
mittance formula:
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 – system gain factor (18)

 – characteristic frequency of the breakpoint in the spectral-response curve (19)

 – system damping coefficient (when ξ ≥ 1, the system does not oscillate) (20)

They make it possible to determine the dynamic properties of the system and facilitate the 
scaling of the equations.

4. Research software for the simulation and analyses  
of torsional vibrations in the motorcycle steering system

The research software has been prepared for the Matlab-Simulink (M-S) environment. It 
makes it possible to simulate nonlinear vibrations in the steering system model, to visu-
alize the computation results with using the phase plane as well, and to carry out ex-
tensive numerical research on variously defined sensitivity problems concerning model 
parameters and input (excitation) signals. This software has been expanded from the one 
presented in the previous paper [18], which was dedicated to numerical problems related 
to the simulation of vibrations in the steering system (controlling of the stick-slip process 
in the neighbourhood of zero velocity and selection of equation integration algorithms and 
equation parameters).

The first part of the research software is an M-file prepared in the Matlab language and the 
second one is a simulation model defined in the form of block diagrams implemented in the 
Simulink environment. The M-file organizes the simulation calculations and their visualiza-
tion; moreover, the variables and parameters are also defined in it. The model as a whole 
may be downloaded from the Internet [8].

Fig. 7. Schematic diagram of the basic model structure

The schematic diagram in Fig. 8 shows the general block structure of the simulation mod-
el. The macro-block includes a detailed schematic diagram of the simulation model (Fig. 9). 
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The other blocks represent virtual oscilloscope unit to monitor current traces of the quanti-
ties observed, clock unit, generator block, and blocks of the “To-Workspace” type, making 
it possible to export the computation results and to visualize them in the phase plane; the 
visualization is done from the M file level.

Fig. 8. Simulation model with a “hard zeroing mechanism”

Fig. 9. Singular state detector model

The schematic diagrams shown in Figs. 8 and 9 depict the essence of functioning of the 
computational model. The system includes singular state detector block, model structure 
switching block controlled by it, and integrator block calculating the velocity values as 
a function of time and provided with an additional resetting input and velocity state output. 
For the whole reset signal duration time, the integrator remains in its initial state. The reset 
signal is generated by the detector block in a closed loop system, based on the velocity 
state output signal. This signal becomes available earlier than the standard signal at the 
integrator output, thanks to which an algebraic loop in the computation process is avoid-
ed. The control condition  and  is defined in the 
detector as shown in Fig. 9.

5. Example results of simulation tests and vibration analyses

In consideration of editorial limitations, the simulation tests and vibration analyses dis-
cussed here were exclusively oriented at highlighting the advantages of the computation 
methods presented. Therefore, the attention was chiefly focused on testing the impact 
of individual parameters of the non-linear luz(…) and tar(…) representations on the vibra-
tion modes and their displays in the phase plane at the assumed input (excitation) signal 
Mw(t) = Mw0sin(ωt). In consideration of a possibility of measurement disturbances, the 
adding of generated white noise q(t) = q0gen(t) to the simulated signals α(t) (Fig. 10) was 
allowed.
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Fig. 10. Time history of the simulated signal α(t) with a measurement noise signal imposed onto it

In the tests presented here, the assumed tests values of the model parameters were by 
no means the data of a real steering system; instead, they were parameters of a scaled 
model, previously used at the testing of numerical procedures [18]. Below is an example 
data set used (in the SI system).

Table 1. List of parameters of the simulation model

Notation used Value Description

Alfa 0 Initial angle of torsion of the torsional pendulum

Ampl 1 Amplitude of the input signal

Omega 1 Angular frequency of the input signal

K 100 Moment of dry kinetic friction forces

T_stat 0.2 Maximum moment of static friction forces

T_kin 0.2 Moment of dry kinetic friction forces

J 0.5 Moment of inertia

Tlum 0.5 Damping coefficient (for viscous friction)

Luz 0.01 Angular freeplay parameter

Luz_gen 0 Freeplay parameter of the external input generator

e 0.0001 “Hard zeroing” parameter

np 5∙10-10 Amplitude parameter of the measurement noise

Let us note that at the mechanical parameter values such as given above, the transmit-
tance parameters are: G0 = 0.01, ω0 = 200, and ξ = 0.03 << 1 and this means that when 
the excitation exclusively comes from non-zero initial conditions, the response is vibration 
decaying at quite a low rate, and if an external excitation is the only input applied to the 
system then vibration with an amplitude reduced to one hundredth may be expected as 
the response.

Selected results of simulation calculations have been presented below as an example. The 
computations were carried out for four data sets (variants) for the model of the system 
under analysis:
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–  Variant 1 (linear model, with neither freeplay nor dry friction): Luz_0 = 0, T_kin = 0,  
T_stat = 0;

– Variant 2 (non-linear model, with freeplay but without dry friction): T_kin = 0, T_stat = 0;

– Variant 3 (non-linear model, without freeplay but with dry friction): Luz_0 = 0;

– Variant 4 (non-linear model, with freeplay and dry friction).

To highlight the impact of measurement disturbances (which is a matter of particular in-
terest as regards the Lissajous figures and Poincaré maps), the tests on forced vibrations 
were carried out with both the absence and presence of measurement disturbances be-
ing assumed.

Free vibration tests in the absence of measurement disturbances

In this case, Mw(t) = 0 and the system vibration is a result of a non-zero torsion angle at the 
initial instant (with all the other initial conditions being zero).

The calculation results (Fig. 11) show a considerable impact of freeplay and dry friction on 
the time curves and phase portraits. In particular, the stick-slip effect is very conspicuous 
for variant 4, when freeplay and dry friction occur at the same time.

Forced vibration tests in the absence of measurement disturbances

All the initial conditions are zero and the system vibration is a result of a signal  
Mw(t) = Mw0sin(ωt) applied as an input.

Selected calculation results (Fig. 12) show a considerable impact of freeplay and dry fric-
tion on the time curves and on the Lissajous figures and Poincaré maps (α was recorded 
for t > 2 s). Singular non-linear effects can be observed for variants 2, 3, and 4; for variant 
4, when freeplay and dry friction occur at the same time.

Forced vibration tests in the presence of measurement disturbances

The test conditions were as specified above, except for the fact that the displays in the 
phase plane were generated for the α(t) curves being disturbed by measurement noise.

Selected calculation results (Figs. 12 and 13) show a considerable impact of freeplay and 
dry friction on the time curves and on the Lissajous figures and Poincaré maps. The impact 
of disturbances was extremely strong for variant 4.



150 The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 76, No. 2, 2017

Variant 1 (linear model, with neither freeplay nor dry friction)

Variant 2 (non-linear model, with freeplay but without dry friction)

Variant 3 (non-linear model, without freeplay but with dry friction)

Variant 4 (non-linear model, with freeplay and dry friction)

Fig. 11. Results of testing free vibration in the absence of measurement disturbances
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Variant 1 (linear model, with neither freeplay nor dry friction)

Variant 2 (non-linear model, with freeplay but without dry friction)

Variant 3 (non-linear model, without freeplay but with dry friction)

Variant 4 (non-linear model, with freeplay and dry friction)

Fig. 12. Results of testing forced vibration in the absence of measurement disturbances
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Variant 1 (linear model, with neither freeplay nor dry friction)

Variant 2 (non-linear model, with freeplay but without dry friction)

Variant 3 (non-linear model, without freeplay but with dry friction)

Variant 4 (non-linear model, with freeplay and dry friction)

Fig. 13. Results of testing forced vibration in the presence of measurement disturbances
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6. Recapitulation

This article presents a method of analysing torsional vibrations in the motorcycle steer-
ing system in the phase plane with using the Lissajous figures and Poincaré maps as 
research tools. For the purposes of presentation of this method and assessment of its 
capabilities, simulation tests were carried out, where a special test model was used, cor-
responding to the structure of the steering system model that enabled the simulation of 
vibrations, including non-linear vibrations generated in the presence of freeplay and fric-
tion. The simulation program incorporated a random noise generator, thanks to which the 
signal curves could be disturbed in a way similar to what takes place in the vibration tests 
carried out on real objects. The computer simulations made it possible to investigate the 
impact of changes in the test model parameters on changes in the display forms.

Based on the computational experiments carried out, some fragments of which have been 
presented herein, a statement may be made that the Lissajous figures and Poincaré maps 
provide a god tool not only to analyse vibrations but also to identify the vibration reasons. 
The presence of freeplay and/or friction significantly deforms the ellipse that is obtained 
as a Lissajous figure in the case of linear vibrations. The appearance of measurement 
noise can be seen in the Lissajous figures but it is especially identifiable (thanks to the 
possibility of estimating the harmonic frequencies) by using Poincaré maps.

The use of this method in the analysis of torsional vibrations in the motorcycle steering 
systems requires multiple simulations to be carried out on a model having a more compli-
cated structure, which should correspond to that of real objects.

The full text of the article is available in Polish online on the website  
http://archiwummotoryzacji.pl.

Tekst artykułu w polskiej wersji językowej dostępny jest na stronie  
http://archiwummotoryzacji.pl.  
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