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The presented paper is concerned with the propagation of Rayleigh waves
in an orthotropic nonlocal micropolar elastic half-space. The main aim of the paper
is to derive dispersion equations of Rayleigh wave as well as Stroh formalism for the
orthotropic nonlocal micropolar medium. Based on the obtained dispersion equation,
the effect of material, nonlocality parameter on the Rayleigh wave propagation is
considered through some numerical examples.
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1. Introduction

The nonlocal theories of elasticity have been proposed by Erin-
gen and Edelen [1, 2], which state that the stress at any reference point within
a continuous body is not only a function of strain at that point, but also a func-
tion of the strain fields at all other points of the body. If L denotes the external
characteristic length and l the internal characteristic length, then in the region
L/l� 1, classical field theories predict sufficiently accurate results. On the other
hand, when L/l ≈ 1, local theories fail and we must use either atomic or non-
local theories that can account for the long-range interatomic attractions [3].
The applications of a nonlocal theory also help to explain, predict the physi-
cal phenomena at small length scales and bridge continuum mechanics with the
deformation mechanisms existing at nanoscales, and for this reason it has been
extensively used within the field of nanomechanics [4, 5].

Khurana and Tomar [6,7] have investigated the reflection/transmission
phenomenon due to incident longitudinal displacement wave at the stress-free flat
boundary and plane discontinuity separating the two distinct nonlocal microp-
olar solids in perfect contact of a micropolar solid half-space. They have proved
that there exist four basic plane waves in a nonlocal micropolar elastic medium,
and two of them are independent compressional waves and remaining two are
coupled transverse waves. Recently, Rayleigh-type waves in nonlocal micropolar
solid half-space have been considered by Khurana and Tomar [8]. Frequency
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equations of these Rayleigh type modes and their conditions of existence have
been derived. Chakraborty [9] has made an effort to understand and quantify
the effect of nonlocal elasticity on the wave propagation response of laminated
composite layered media. However, no investigation has been carried out so far
for the case when the half-space (or laminated composite layered media) is the
orthotropic nonlocal micropolar medium, to the best knowledge of the authors.

Therefore, the aim of the present paper is twofold: firstly, to present the Stroh
formalism for the orthotropic nonlocal micropolar medium, it is the base tool for
investigating the reflection and transmission problems as well as a propagation
wave in laminated composite layered media; secondly, to obtain the dispersion
equation of the Rayleigh wave in the orthotropic nonlocal micropolar medium,
the condition for existence of Rayleigh type modes, the effect of parameters
material, nonlocality on the Rayleigh wave modes are shown.

2. Basic equations

For two-dimensional geometry (planex1x2), the plane strains are related to
the displacement field u1, u2 and microrotation φ. The constitutive equations are
given as [9]

(2.1)
t11 = Q11u1,1 +Q12u2,2, t12 = Q78u1,2 +Q77u2,1 − κ12φ,

t21 = Q88u1,2 +Q78u2,1 − κ21φ, t22 = Q12u1,1 +Q22u2,2,

M13 = B66φ,1, M23 = B44φ,2,

where tij , Mij (σij ,mij) are the force and couple stress tensors in an local (non-
local) micropolar elastic medium, which have relations [3, 8, 9]

(2.2)
t11 = (1− ε2∇2)σ11, t21 = (1− ε2∇2)σ21, t22 = (1− ε2∇2)σ22,

M13 = (1− ε2∇2)m13, M23 = (1− ε2∇2)m23

and ε (= e0a) is the nonlocal parameter (e0 is the nonlocal constant and a is
the internal characteristic length). The present nonlocal model can be compared
to the Born-Karman model of lattice dynamics where the nearest neighbour
interactions are accounted [10]. This is in accordance with atomic theory of
lattice dynamics and experimental observations on the phonon dispersion [11].
Therefore, the choice of the value of parameter e0 ≈ 0.39 is taken such that
the e0 provides the perfect matching of phonon dispersion curves at the end of
the Brillouim zone [3, 9]. The symbols Qij , κij , Bij are the local micropolar
constants.

The equations of motion for a micropolar elastic solid are expressed by [12, 13]

(2.3)
σ11,1 + σ21,2 − ρü1 = 0, σ12,1 + σ22,2 − ρü2 = 0,

m13,1 +m23,2 + σ12 − σ21 − ρjφ̈ = 0.
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Substituting (2.1) into (2.3) and taking into account (2.2), we have

Q11u1,11+(Q12+Q78)u2,12+Q88u1,22−κ21φ,2 = ρü1−ρε2(ü1,11+ü1,22),

(Q12+Q78)u1,12+Q77u2,11+Q22u2,22−κ12φ,1 = ρü2−ρε2(ü2,11+ü2,22),(2.4)

B66φ,11+B44φ,22+(κ21−κ12)φ+κ21u1,2+κ12u2,1 = ρjφ̈−ρjε2(φ̈,11+φ̈,22).

Remark 1. The Stroh formalism for the nonlocal orthotropic micropolar
medium.

For the waves propagating in the plane x2 = 0, we take the form of relevant
components of displacement and microrotation fields as [14]

(2.5)

u1 = U1(y)eik(x1−ct), u2 = U2(y)eik(x1−ct), φ = kΦ(y)eik(x1−ct),

t21 = ikT1(y)eik(x1−ct), t22 = ikT2(y)eik(x1−ct),

M23 = iM(y)eik(x1−ct); y = kx2,

where Um(y), Tm(y) (m = 1, 2), Φ(y) and M(y) are unknown functions to be
determined, k is the wavenumber, c is the speed of wave propagation in the
positive direction of x1-axis.

From (2.1)–(2.4) and (2.5) one can see that the unknown functions Um(y),
Tm(y) (m = 1, 2), Φ(y) and M(y) are the solution of the differential equation.

(2.6) ξ′(y) = iNξ(y),

where ξ = [U1 U2 Φ T1 T2 M ]T , the prime indicates the differentiation with
respect to y and

(2.7) N =

[
N1 N2

N3 N2

]
.

The matrices Nk are given by

(2.8)

N1 =

 0 −Q78

Q88
− iκ21
Q88

−Q12

Q22
0 0

0 0 0

, N2 =


1
Q88

0 0

0 1
Q22

0

0 0 1
k2B44

,

N3 =

N
11
3 0 0

N21
3 N22

3 N23
3

0 N32
3 N33

3

, N4 =

 0 N12
4 N13

4

N21
4 0 0

N31
4 0 0

.
where the elements N ij

3 , N ij
4 are given in Appendix. Equation (2.6) is called the

Stroh formalism (see [15]). It is the base tool for investigating the reflection and
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transmission problem as well as the propagation wave in laminated composite
layered media [14]. In order to find the solution of Eq. (2.6) we have to solve its
characteristic equation

(2.9) |N− pI| = 0

to calculate characteristic values p of matrix N, here I is the identity matrix of
six order.

We note that N3,N4 are not symmetric real matrices, therefore we cannot
employ the method of first integrals [16, 17] in order to obtain the explicit disper-
sion equation of the wave. In the next section, the explicit dispersion equation is
only derived for the special case of the nonlocal orthotropic micropolar medium.

3. The dispersion equations of Rayleigh wave in the nonlocal
orthotropic micropolar medium

For the waves propagating in the plane x2 = 0; with their amplitudes decay-
ing in x2 positive direction (surface wave), we take the form of relevant compo-
nents of displacement and microrotation fields as [18]

(3.1)


u1 = Ae−ξyeik(x1−ct),

u2 = Be−ξyeik(x1−ct),

φ = Dke−ξyeik(x1−ct),

y = kx2,

here A, B, D are scalar constants, k is the wavenumber, ξ is real, positive
quantity, c is a speed of wave propagation.

Substituting (3.1) into (2.4), we get

(3.2)

[Q88ξ
2−Q11+ρc2+ρε2k2c2(1−ξ2)]A−i[(Q12+Q78)ξ]B+κ21ξD = 0,

[(Q12+Q78)iξ]A−[Q22ξ
2−Q77+ρc2+ρε2k2c2(1−ξ2)]B+κ12iD = 0,

κ21ξA−κ12iB

−[B44k
2ξ2−B66k

2+(κ21−κ12)+ρjk2c2−ρjε2k4c2(1−ξ2)]D = 0.

The necessary condition for the existence of a non-trivial solution of A, B and D
for above system equations is vanishing of the determinant of the corresponding
coefficients matrix, which yields a full cubic equation for ξ2. Using Mathematica,
analytic roots are given. However, it is quite a complex form, and we have solved
it numerically. An approximate analytic root is obtained when the medium is
nonlocal isotropic micropolar elastic (see [8])

(3.3)
Q11 = Q22 = λ+ 2µ+ κ, Q12 = λ, Q78 = µ, Q77 = Q88 = µ+ κ,

κ12 = −κ21 = κ, B44 = B66 = γ.
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We note that for the surface waves to be Rayleigh wave, the quantities ξ1, ξ2, ξ3

must be real and positive. When the expressions (3.1) of displacement and mi-
crorotation fields are rewritten as

(3.4)


u1 =

∑3
j=1Aje

−ξjyeik(x1−ct),

u2 =
∑3

j=1Bje
−ξjyeik(x1−ct),

φ =
∑3

j=1Djke
−ξjyeik(x1−ct).

For each ξj , from (3.2), we find Aj , Bj , Dj and that have relations Aj = αjDj

and Bj = βjDj , (j = 1, 2, 3) with

(3.5)

αj =
κ12(Q12 +Q78)ξj + κ21ξj [Q22ξ

2
j −Q77 + ρc2 + ρξ2

j k
2c2(1− ξ2

j )]

∆j
,

βj =
κ21ξ

2
j (Q12 +Q78)i− κ12i[Q88ξ

2
j −Q11 + ρc2 + ρξ2

j k
2c2(1− ξ2

j )]

∆j
,

∆j = −[Q88ξ
2
j −Q11 + ρc2 + ρξ2

j k
2c2(1− ξ2

j )]

× [Q22ξ
2
j −Q77 + ρc2 + ρξ2

j k
2c2(1− ξ2

j )]− (Q12 +Q78)2ξ2
j .

Since the boundary surface of the half-space is mechanically stress free,
therefore all the components of force and couple stresses must vanish, that is,
t12 = t22 = 0 and M23 = 0 at the surface x2 = 0 lead to

(3.6)


ξ1D1 + ξ2D2 + ξ3D3 = 0,

ξ∗1D1 + ξ∗2D2 + ξ∗3D3 = 0,

ξ∗∗1 D1 + ξ∗∗2 D2 + ξ∗∗3 D3 = 0,

where ξ∗j = Q78αjξj −Q77iβj and ξ∗∗j = Q12iαj −Q22ξjβj , (j = 1, 2).
The determinant of the coefficient matrix must vanish, which yields

(3.7) det

 ξ1 ξ2 ξ3

ξ∗1 ξ∗2 ξ∗3
ξ∗∗1 ξ∗∗2 ξ∗∗3

 = 0.

This is the dispersion equation for the propagation of Rayleigh type waves
in nonlocal micropolar elastic solid half-space. As you know, the dispersion
Eq. (3.7) is also implicit because the determination of the analytic solutions
ξi of (3.2) is impossible. However, when the medium is nonlocal orthotropic elas-
tic Q77 = Q78 = Q88 = Q66 and κ12 = κ21 = 0, the explicit dispersion equation
is presented, namely. The system equations (2.4) reduce to

(3.8)
Q11u1,11 + (Q12 +Q66)u2,12 +Q66u1,22 = ρü1 − ρε2(ü1,11 + ü1,22),

Q66u2,11 + (Q12 +Q66)u1,22 +Q22u2,22 = ρü2 − ρε2(ü2,11 + ü2,22).
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The solutions of (3.8) with their amplitudes decaying in x2 direction are the
form of

(3.9)

{
u1 = Ae−ξyeik(x1−ct),

u2 = Be−ξyeik(x1−ct),
y = kx2.

Substituting (3.9) into (3.8) we have system equations for A and B

(3.10)

{
[Q66ξ

2 −Q11 + ρc2 + ρε2k2c2(1− ξ2)]A− i[(Q12 +Q66)ξ]B = 0,

−i[(Q12 +Q66)ξ]A+ [Q22ξ
2 −Q66 + ρc2 + ρε2k2c2(1− ξ2)]B = 0.

The necessary condition for the existence of a non-trivial solution of A and B
for above system equations is vanishing of the determinant of the corresponding
coefficients matrix, which yields

(3.11) [(Q66 − ρc2k2ε2)ξ2 + ρc2(1 + k2ξ2)−Q11]

× [(Q22 − ρc2k2ε2)ξ2 + ρc2(1 + k2ξ2)−Q66] + (Q12 +Q66)2ξ2 = 0.

This equality leads to the quadratic equation in ξ as

(3.12) (Q22 − ρc2k2ε2)(Q66 − ρc2k2ε2)ξ4 + [(Q12 +Q66)2 + (Q66 − ρc2k2ε2)

× (ρc2(1 + k2ε2)−Q66) + (Q22 − ρc2k2ε2)(ρc2(1 + k2ε2)−Q11)]ξ2

+ [ρc2(1 + k2ε2)−Q11][ρc2(1 + k2ε2)−Q66] = 0.

Remark 2. The frequency at which the imaginary parts become real is called
the cut-off frequency, ωc [9, 11]. The values of these frequencies can easily be
obtained by substituting ξ = 0 in Eq. (3.12). Thus, the two cut-off frequencies
are ωc1 = k

√
Q11/ρ′ and ωc2 = k

√
Q66/ρ′ where ρ′ = ρ(1 + k2ε2). When the

wavenumbers become infinite at a particular frequency, which is referred here
as the escape frequency, ωe. Beyond this frequency, the wavenumbers are purely
imaginary, i.e., evanescent modes. The expressions for the escape frequencies can
be obtained by forcing the coefficient of ξ4 equal to 0 in Eq. (3.12) [9, 11], which
gives ωe1 = ε−1

√
Q22/ρ and ωe2 = ε−1

√
Q66/ρ.

We choose the solutions ξ1, ξ2 real, positive of Eq. (3.12)

(3.13)

{
u1 = (A1e

−ξ1y +A2e
−ξ2y)eik(x1−ct),

u2 = (B1e
−ξ1y +B2e

−ξ2y)eik(x1−ct),

where Bk = αkAk and

(3.14) αk =
i[Q11 −Q66ξ

2
k − ρc2 − ρc2k2ε2(1− ξ2

k)]

(Q12 +Q66)ξk
(k = 1, 2).
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From (3.12), using the Viète theorem, we have

(3.15)

ξ2
1 + ξ2

2 = − [(Q12 +Q66)2 + (Q66 − ρc2k2ε2)(ρc2(1 + k2ε2)−Q66)]

(Q22 − ρc2k2ε2)(Q66 − ρc2k2ε2)

− [(Q22 − ρc2k2ε2)(ρc2(1 + k2ε2)−Q11)]

(Q22 − ρc2k2ε2)(Q66 − ρc2k2ε2)
,

ξ2
1ξ

2
2 =

[ρc2(1 + k2ε2)−Q11][ρc2(1 + k2ε2)−Q66]

(Q22 − ρc2k2ε2)(Q66 − ρc2k2ε2)
.

For true Rayleigh-type surface waves, the quantities ξ1, ξ2 must be positive. For
to be positive and real, we must have

(3.16) 0 < ρc2 < min

(
Q11

1 + k2ε2
,

Q66

1 + k2ε2

)
.

It is noted that, in order to obtain the condition for existence of Rayleigh type
modes, we use (3.15) and the determinant ∆∗ of the quadratic equation (3.12)
in ξ

∆∗ = [(Q12 +Q66)2 +Q′66(X ′ −Q66) +Q′22(X ′ −Q22)](3.17)

− 4Q′22Q
′
66(X ′ −Q11)(X ′ −Q66) + (Q12 +Q66)4

+ [Q′22(X ′ −Q11)−Q′66(X ′ −Q66)]2

+ 2(Q12 +Q66)2[Q′22(X ′ −Q11) +Q′66(X ′ −Q66)],

where

(3.18) X ′ = ρc2 + ρc2k2ε2, Q′66 = Q66 + ρc2k2ε2, Q′22 = Q22 + ρc2k2ε2.

Using the stress-free boundary condition gives:

(3.19) t12 = t22 = 0 at x2 = 0.

That leads to

(3.20)

{
(α1 + ξ1)e−ξ1yA1 + (α2 + ξ2)e−ξ2yA2 = 0,

(Q12 −Q22α1ξ1)e−ξ1yA1 + (Q12 −Q22α2ξ2)e−ξ2yA2 = 0.

The solvability of (3.20), we obtain

(3.21) (Q22ξ1ξ2 +Q12)(α2 − α1) + (Q22α1α2 +Q12)(ξ2 − ξ1) = 0.

Using (3.14) and (3.15), we have the relations

(3.22) α2 − α1 = −Q11 −X ′ +Q′66ξ1ξ2

(Q12 +Q66)ξ1ξ2
(ξ2 − ξ1), α1α2 =

Q11 −X ′

Q′22ξ1ξ2
.
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Substituting (3.22) into (3.21), that reduces to

(3.23) ξ1ξ2[(Q11 +Q66)Q12Q
′
22 −Q′22(Q12Q

′
66 +Q22(Q11 −X ′))]

+ (Q12 +Q66)Q22(Q11 −X ′)−Q′22Q12(Q11 −X ′)−Q′22Q22Q
′
66ξ

2
1ξ

2
2 = 0.

Using ξ2
1ξ

2
2 from (3.15), Eq. (3.23) may be written

(3.24) (Q66 −X ′)[(Q12 +Q66)Q12Q
′
22 −Q′22(Q12Q

′
66 +Q22(Q11 −X ′))]

+ (Q22X
′ −Q12ρc

2k2ε2)
√
Q′22Q

′
66

√
(Q11 −X ′)(Q66 −X ′).

In order to proceed it is convenient to use to computational purposes, dimen-
sionless material parameters defined by [19]

(3.25) x =
ρc2

Q78
, ep = k2ε2, α =

Q22

Q11
, γ =

Q66

Q11
, δ = 1− Q2

12

Q11Q22
.

Equation (3.24) has another form

(3.26) (1− x(1 + ep))

(
α

γ
+ x.ep

)(
αx(1 + ep)

γ
− αδ

γ2

)
+

(
α

γ
x(1 + ep)−

√
α(1− δ)

γ2
x.ep

)

×

√(
α

γ
+ x.ep

)(
1 + x.ep

)√(
1

γ
− x(1 + ep)

)
(1− x(1 + ep)) = 0.

This is explicit dispersion equation of Rayleigh waves propagating in nonlocal or-
thotropic halfspace. Especially, when the medium is classical elastic solid, namely
Qij ≡ Cij and ε = 0, Eq. (3.26) reduces to Eq. (3.5) that is presented by Vinh
and Ogden in [19]

(3.27)
√
α(1− x)

(
x− δ

γ

)
+ x
√

1− x
√

1− γx = 0.

4. Numerical results and discussions

In order to illustrate theoretical results obtained in the preceding sections,
we now present some numerical results taking (see [8])

(4.1)

Q11 = 0.088×1011 N/m2, Q12 = 0.4×1011 N/m2, Q22 = 1011 N/m2,

Q77 = 0.4×1011 N/m2, Q78 = 4×1011 N/m2, Q88 = 0.12×1011 N/m2,

B44 = 0.1×10−9 N, B66 = 0.5×10−9 N,

κ12 = 0.1×1011 N/m2, κ21 = 0.5×1011 N/m2,

ρ = 1740 kg/m−3, j = 2×10−20 m2, e0 = 0.39, a = 0.421×10−9 m.

First, we can find the non-dimensional speed of the Rayleigh wave x = ρc2/Q78
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by solving equation from (3.2). For this computational purpose, we use dimen-
sionless parameters

(4.2)
e0 = jk2

0, e1 =
Q11

Q78
, e2 =

Q22

Q78
, e3 =

Q12

Q78
, e4 =

Q77

Q78
,

e5 =
Q88

Q78
, e6 =

B44

jQ78
, e7 =

B66

jQ78
, e8 = k2

0ε
2
0.

In Fig. 1 we depict the comparison between the nonlocal and local micropolar
for amplitudes of x1; x2; x3 (correspond to read; green; blue curve) against the

Fig. 1. Variation of the non-dimensional speeds of Rayleigh wave x on the incident angle θ0
for the local micropolar, nonlocal micropolar.

(a) Local (b) Nonlocal

Fig. 2. Variation of the non-dimensional speeds of Rayleigh wave x on wavenumber k for the
local micropolar, nonlocal micropolar.
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incident angle θ0. We have seen that at each angle of incidence the amplitudes of x
for the nonlocal orthotropic micropolar solid are bigger than the corresponding
values for the orthotropic local micropolar solid.

Figure 2 shows the variation of these roots against the wavenumber k for the
orthotropic local micropolar, nonlocal orthotropic micropolar. Only those roots
that satisfy the condition for existence of Rayleigh type waves given by (3.16)
correspond to true Rayleigh type waves. It is also clear from this figure that
the Rayleigh type wave is dispersive in the nonlocal micropolar solid, while it is

2 4 6 8 10

x 10
−3

0

1

2

3

4

5

6

7

8
x 10

6

ε

E
sc

ap
e 

fr
eq

ue
nc

y−
ω

ω
c1

ω
c2
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non-dispersive in local micropolar solid. It can be seen that the Rayleigh wave is
highly dispersive at the low wavenumber ranging between 0.4.1011 < k < 1.1011.
However, it has been seen that for the high wavenumber k > 1.1011; the Rayleigh
wave is poorly dispersive in a nonlocal orthotropic micropolar solid.

Figure 3 shows the variation of escape frequencies with the nonlocal param-
eter ε = e0a. The value of escape frequencies decreases with an increase in the
scale parameter ε. At higher values of ε, escape frequencies approach to very
small values.
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(a) Effect of γ: α = 0.6, δ = 0.2, ε = 10−10 (b) Effect of α: γ = 0.1, δ = 0.5, ε = 10−10

Fig. 5. Effect of γ, α parameter on the non-dimensional speed of Rayleigh wave x for
nonlocal and local orthotropic half-space.
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Fig. 6. Effect of δ parameter on the non-dimensional speed of Rayleigh wave x for nonlocal
and local orthotropic half-space with γ = 0.1, α = 0.3, ε = 10−10.
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The variation of the cut-off frequencies with wavenumber k variation with
frequency, ω are shown in Fig. 4. This figure shows that, the cut-off frequency k1

appears at ω ≈ 42THz, and the one k2 emerges at ω ≈ 82THz. From Eqs. (3.26)
and (3.27), the comparison of the effect of γ, α and δ parameter on the non-
dimensional speed of the Rayleigh wave x for the nonlocal and local orthotropic
half-space are shown graphically in Figs. 5 and 6. The pattern is similar for the
nonlocal and the local solid. However, at each value of the parameter, the value
of x for the nonlocal solid is bigger than one for the local solid.
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Fig. 7. Variation of non-dimensional speed x of Rayleigh wave against non-dimensional
constant ep.
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α = 0.06 and δ = 0.2.
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Using the explicit dispersion equation (3.26) for the case of nonlocal or-
thotropic medium, the variation of non-dimensional speed x against non-dimen-
sional constant ep = k2ε2 for different values of γ, α and δ parameters are plotted
in Figs. 7 and 8. It is interesting that the shape of curve for the different values
of γ is almost unchanged in Fig. 8.

5. Conclusions

In this paper, we have studied the propagation of Rayleigh waves in a nonlocal
orthotropic micropolar elastic half-space. The few conclusions drawn from this
analysis may be explained as follows.

(i) The Stroh formalism is presented for the nonlocal orthotropic micropolar
medium. That is the base tool for investigating the reflection and transmission
problem and the propagation wave in layered media.

(ii) The dispersion equation of the Rayleigh wave in the nonlocal orthotropic
micropolar medium is found. For a special case, when the half-space is nonlocal
orthotropic elastic, the explicit dispersion equation of Rayleigh wave has been
derived. This equation reduces to Eq. 3.5 in [19] when we neglect the nonlocal
effect from the model.

(iii) Phase speeds of these waves are computed numerically and their varia-
tion against the incident angle θ0, non-dimensional frequency dimensionless pa-
rameter are presented graphically. For orthotropic nonlocal half-space, the com-
parisons have been made between the phase speeds of Rayleigh wave through
nonlocal, local and different parameters half-spaces.

The present numerical study might provide more relevant information about
the wave propagation in nonlocal orthotropic micropolar elastic solids. These
results are recorded and used as the input data of the inverse problem (non-
destructive evaluation).

Appendix

The elements of matrices N3 and N4

N11
3 =

[
ρc2 −Q11 +

Q2
12

Q22
+ ρc2k2ε2

(
1 +

Q78Q12

Q22Q88

)]
/δ1,

N21
3 =

[
ρc2k2ε2

iQ12

Q22

]
/δ2, N22

3 =

[
ρc2 −Q77 +

Q2
78

Q88
+ ρc2k2ε2

]
/δ2,

N23
3 = −i

[
κ12 −

κ21Q78

Q88

]
/δ2, N32

3 = i

[
κ12 −

κ21Q78

Q88
− ρjc2ε2k4i

]
/δ3,
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N33
3 =

[
ρjk2c2 + κ21 − κ12 +

κ2
21

Q88
−B66k

2

]
/δ3,

N12
4 =

[
ρc2k2ε2Q78i

Q88Q22
− Q12

Q22

]
/δ1, N13

4 = −
[
κ21iρc

2k2ε2

Q88B44k2

]
/δ1,

N21
4 = −

[
Q78

Q88

]
/δ2, N31

4 =

[
κ21i

Q88

]
/δ3,

δ1 = 1− ρc2k2ε2

Q88
, δ2 = 1− ρc2k2ε2

Q22
, δ3 = 1− ρc2jk2ε2

B44
.
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