PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a microservices-based architecture for residential energy efficiency monitoring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the significant advancement of electrical infrastructure in the context of smart buildings and smart homes, the need arises to overcome the limitations of the traditional energy efficiency control system based on service-oriented architecture (SOA). To address these challenges, this study proposes a distributed architecture based on microservices, with the main objective of improving the performance and stability of these systems. This proposal seeks to enable end users to effectively monitor and control their electrical devices while effectively integrating them into a wide network of power systems. The proposed architecture relies on a series of cloud services that enable better performance and control in energy efficiency management, highlighting key features of microservices such as fault tolerance, performance, and scalability. Using a structural methodology centered on pre-existing components and an iterative approach, a versatile and scalable architecture was designed that addresses current challenges in energy efficiency management. The results show a significant impact on key performance indicators such as demand response, energy savings, and power quality, highlighting the resilience and scalability of the proposed architecture. The conclusions highlight the importance of energy efficiency in reducing the environmental impact and costs associated with electric power, suggesting future improvements in data access and the implementation of advanced machine learning algorithms.
Bibliografia
  • [1] J. A. Barriga, P. J. Clemente, J. Hernández, and M. A. Pérez-Toledano, “SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments on FIWARE,” IEEE Access, vol. 10, pp. 7800-7822, 2022, conference Name: IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/9680737/?arnumber=9680737
  • [2] K. Li, J. Zhao, J. Hu, and Y. Chen, “Dynamic energy efficient task offloading and resource allocation for NOMA-enabled IoT in smart buildings and environment,” Building and Environment, vol. 226, p. 109513, Dec. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360132322007430
  • [3] Y. Wang, C. Zhao, S. Yang, X. Ren, L. Wang, P. Zhao, and X. Yang, “MPCSM: Microservice Placement for Edge-Cloud Collaborative Smart Manufacturing,” IEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 5898-5908, Sep. 2021, conference Name: IEEE Transactions on Industrial Informatics. [Online]. Available: https://ieeexplore.ieee.org/document/9250590/?arnumber=9250590
  • [4] A. Smolarz, P. Lezhniuk, S. Kudrya, V. Komar, V. Lysiak, I. Hunko, S. Amirgaliyeva, S. Smailova, and Z. Orazbekov, “Increasing Technical Efficiency of Renewable Energy Sources in Power Systems,” Energies, vol. 16, no. 6, p. 2828, Jan. 2023, number: 6 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1996-1073/16/6/2828
  • [5] A. Haque, R. Rahman, and S. Rahman, “Microservice-based Architecture of a Software as a Service (SaaS) Building Energy Management Platform,” in 2020 6th IEEE International Energy Conference (ENERGYCon), Sep. 2020, pp. 967-972. [Online]. Available: https://ieeexplore.ieee.org/document/9236617/?arnumber=9236617
  • [6] D. Yi, T. Donghui, W. Xuegang, and Z. Shuliang, “Application of Authorization in Smart Grid based on the PasS Microservice architecture,” IOP Conference Series: Earth and Environmental Science, vol. 512, no. 1, pp. 012 118-012 118, Jun. 2020, publisher: IOP Publishing. [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/512/1/012118
  • [7] I. Nuñez E. E. Cano, E. Cruz, and C. Rovetto, “Designing a Comprehensive and Flexible Architecture to Improve Energy Efficiency and Decision-Making in Managing Energy Consumption and Production in Panama,” Applied Sciences, vol. 13, no. 9, p. 5707, Jan. 2023, number: 9 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2076-3417/13/9/5707
  • [8] A. Kumar, S. Sharma, N. Goyal, A. Singh, X. Cheng, and P. Singh, “Secure and energy-efficient smart building architecture with emerging technology IoT,” Computer Communications, vol. 176, pp. 207-217, Aug. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0140366421002279
  • [9] D. Mariano- Hernández, L. Hernández -Callejo, A. Zorita-Lamadrid, O. Duque-Pe´rez, and F. Santos Garc´ıa, “A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis,” Journal of Building Engineering, vol. 33, p. 101692, Jan. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352710220310627
  • [10] M. Pau, M. Mirz, J. Dinkelbach, P. Mckeever, F. Ponci, and A. Monti, “A Service Oriented Architecture for the Digitalization and Automation of Distribution Grids,” IEEE Access, vol. 10, pp. 37 050- 37 063, 2022, conference Name: IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/9748116/?arnumber=9748116
  • [11] M. Santamouris and K. Vasilakopoulou, “Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 1, p. 100002, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2772671121000024
  • [12] R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, and S. Ajayi, “Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques,” Journal of Building Engineering, vol. 45, p. 103406, Jan. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S235271022101264X
  • [13] X. Yin, Y. Zhu, and J. Hu, “A Subgrid-Oriented Privacy-Preserving Microservice Framework Based on Deep Neural Network for False Data Injection Attack Detection in Smart Grids,” IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1957- 1967, Mar. 2022, conference Name: IEEE Transactions on Industrial Informatics. [Online]. Available: https://ieeexplore.ieee.org/document/9508811/?arnumber=9508811
  • [14] A.-D. Pham, N.-T. Ngo, T. T. Ha Truong, N.-T. Huynh, and N.-S. Truong, “Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability,” Journal of Cleaner Production, vol. 260, p. 121082, Jul. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S095965262031129X
  • [15] Y. Himeur, K. Ghanem, A. Alsalemi, F. Bensaali, and A. Amira, “Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives,” Applied Energy, vol. 287, p. 116601, Apr. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261921001409
  • [16] L. Huang, W. Zhuang, M. Sun, and H. Zhang, “Research and Application of Microservice in Power Grid Dispatching Control System,” in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, Jun. 2020, pp. 1895-1899. [Online]. Available: https://ieeexplore.ieee.org/document/9084931/?arnumber=9084931
  • [17] P. Wang, L. Dong, y. xu, W. Liu, and N. Jing, “Clustering- Based Emotion Recognition Micro-Service Cloud Framework for Mobile Computing,” IEEE Access, vol. 8, pp. 49 695-49 704, 2020, conference Name: IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/9031338/?arnumber=9031338
  • [18] S. Taherizadeh and M. Grobelnik, “Key influencing factors of the Kubernetes auto-scaler for computing-intensive microservice-native cloud-based applications,” Advances in Engineering Software, vol. 140, p. 102734, Feb. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0965997819304375
  • [19] D. Liu, C. Li, Z. Jiang, R. Kong, L. Wu, and C. Ma, “Integrated Power Grid Management System based on Micro Service,” in 2020 Eighth International Conference on Advanced Cloud and Big Data (CBD), Dec. 2020, pp. 37-41. [Online]. Available: https://ieeexplore.ieee.org/document/9406985/?arnumber=9406985
  • [20] N. A. Hussien, A. A. D. Al Magsoosi, A. A. D. Al Magsoosi, H. T. Salim AlRikabi, and F. T. Abed, “Monitoring the Consumption of Electrical Energy Based on the Internet of Things Applications,” International Journal of Interactive Mobile Technologies (iJIM), vol. 15, no. 07, pp. 17-29, Apr. 2021, publisher: International Association of Online Engineering. [Online]. Available: https://online-journals.org/index.php/i-jim/article/view/20183
  • [21] B. Cen, C. Hu, Z. Cai, Z. Wu, Y. Zhang, J. Liu, and Z. Su, “A configuration method of computing resources for microservice-based edge computing apparatus in smart distribution transformer area,” International Journal of Electrical Power & Energy Systems, vol. 138, p. 107935, Jun. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061521011455
  • [22] N. Fikri, M. Rida, N. Abghour, K. Moussaid, A. E. Omri, and M. Myara, “A Blockchain Architecture for Trusted Sub-Ledger Operations and Financial Audit Using Decentralized Microservices,” IEEE Access, vol. 10, pp. 90 873-90 886, 2022, conference Name: IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/9868017/?arnumber=9868017
  • [23] I. S. Areni, A. Waridi, Indrabayu, C. Yohannes, A. Lawi, and Bustamin, “IoT-Based of Automatic Electrical Appliance for Smart Home,” International Journal of Interactive Mobile Technologies (iJIM), vol. 14, no. 18, pp. 204-212, Nov. 2020, publisher: International Association of Online Engineering. [Online]. Available: https://online-journals.org/index.php/i-jim/article/view/15649
  • [24] C. K. Metallidou, K. E. Psannis, and E. A. Egyptiadou, “Energy Efficiency in Smart Buildings: IoT Approaches,” IEEE Access, vol. 8, pp. 63 679-63 699, 2020, conference Name: IEEE Access. [Online]. Avail-able: https://ieeexplore.ieee.org/document/9050775/?arnumber=9050775
  • [25] A. Daissaoui, A. Boulmakoul, L. Karim, and A. Lbath, “IoT and Big Data Analytics for Smart Buildings: A Survey,” Procedia Computer Science, vol. 170, pp. 161-168, Jan. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050920304506
  • [26] J. D. Esquicha-Tejada and J. C. C. Pineda, “Low-Cost and Energy-Efficient Alternatives for Home Automation using IoT,” International Journal of Interactive Mobile Technologies (iJIM), vol. 16, no. 05, pp. 153-168, Mar. 2022, publisher: International Association of Online Engineering. [Online]. Available: https://online-journals.org/index.php/i-jim/article/view/25575
  • [27] Z. Baharum, A. S. Sabudin, E. M. M. Yusof, and N. A. Ahmad, “Mobile-Based Application: The Designation of Energy Saving Smart Light System for Monitoring and Controlling,” International Journal of Interactive Mobile Technologies (iJIM), vol. 15, no. 18, pp. 90-103, Sep. 2021, publisher: International Association of Online Engineering. [Online]. Available: https://online-journals.org/index.php/i-jim/article/view/24733
  • [28] W. Wu and H. M. Skye, “Residential net-zero energy buildings: Review and perspective,” Renewable and Sustainable Energy Reviews, vol. 142, p. 110859, May 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032121001532
  • [29] L. Mendoza-Pitti, H. Calderón-Gómez, M. Vargas-Lombardo, J. M. Gómez -Pulido, and J. L. Castillo-Sequera, “Towards a Service- Oriented Architecture for the Energy Efficiency of Buildings: A Systematic Review,” IEEE Access, vol. 9, pp. 26 119-26 137, 2021, conference Name: IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/9348934/?arnumber=9348934
  • [30] L. Chen, S. Tang, V. Balasubramanian, J. Xia, F. Zhou, and L. Fan, “Physical-layer security based mobile edge computing for emerging cyber physical systems,” Computer Communications, vol. 194, pp. 180-188, Oct. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0140366422002857
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f014c96e-d6e6-4f67-a123-cd6f1230d0b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.