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Abstract
Position determination of Global Navigation Satellite Systems (GNSS) depends on the stability and accuracy 
of the measured time. However, since satellite vehicles (SVs) travel at velocities significantly larger than the 
receivers and, more importantly, the electromagnetic impulses propagate through changing gravitational poten-
tials, enormous errors stemming from relativity-based clock offsets would cause a position error of about 11 km 
to be accumulated after one day. Based on the premise of the constancy of light, two major relativistic effects 
are described: time dilation and gravitational-frequency shift. Following the individual interests of the author, 
formulas of both are scrupulously derived from general- and special-relativity theory principles; moreover, in 
the penultimate section, the equations are used to calculate the author’s own numerical values of the studied 
parameters for various GNSSs and one Land Navigation Satellite System (LNSS).

Introduction

The twentieth century brought the first precise 
global satellite navigation systems. In 1964, the pio-
neer TRANSIT was launched, accompanied 10 years 
later by a nemesis system, Cykada. Both of these 
were ultimately replaced by their more advanced 
counterparts and several other satellite systems were 
installed (Specht, 2007). Today, four major systems 
can be listed, namely GPS, Galileo, GLONASS, and 
Chinese BeiDou, though the last is currently under 
further development (conversion from local Bei-
Dou to global COMPASS). The fact that the Indian 
Regional Navigation Satellite System (IRNSS) is 
a local satellite system notwithstanding, it will also be 
taken into consideration in the final part of this paper. 
The common factor of all these positioning systems 
is in terms of precision (Specht, 2003; Januszewski, 
2005). Nonetheless, each and every SV’s clock is 
prone to gravitational and motional frequency shifts 
that are too significant to ignore (Narkiewicz, 2007). 
If a clock is provided with unsupported time deter-
mination due to numerous relativistic effects, then, 
based on the special and general theory of relativity, 

the system should be rendered non-operational. 
In this paper, ways of calculating such effects are 
undertaken and an example is shown, focusing on 
the very derivation of error-figuring formulas. This 
is done in hope that when relativistic effects are fully 
understood, diminishing them to an insignificant size 
should be possible.

Principles of satellite systems

The principles of position determination in sat-
ellite systems are based on constancy of the speed 
of electromagnetic signals. It can be accomplished, 
provided that both the user of the GNSS and the sat-
ellite itself have their clocks synchronized in one 
mutual, underlying, inertial frame (Januszewski, 
2010). The signals sent to the receiver are provided 
with an encrypted message (Specht, 2007). With-
in the message, the information about the time and 
position of the constellation is coded. By comparing 
the time of the SV and receiver, the distance is cal-
culated (Januszewski, 2004). Mathematically it can 
be stated as follows:
	 d = c (t0 – tsv)	 (1)
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Figure 1 illustrates how this is performed in the 
GPS. In order to determine the position unambigu-
ously, at least four time signals need to be received, 
so four equations (1) are solved to provide the posi-
tion (Narkiewicz, 1999; 2007). 

Figure 1. The distance in satellite navigation is calculated as 
the speed of light multiplied by the time difference

Since the only navigational parameter that is used 
for calculations is the time, it is convenient to mea-
sure the error in seconds (Narkiewicz, 1999; 2007); 
for instance, an error of 1 nanosecond would cause 
a position error of about 30 centimeters. 

Principles of relativity

The special (1905) and general (1915) theo-
ry of relativity published by Albert Einstein have 
fundamentally changed people’s understanding of 
the nature. Contrary to the Newtonian framework 
of absolute space and time, three postulates of the 
summed theories of relativity may be stated (Wil-
liams, 1968):
(1)	 The laws of physics have the same form in all 

inertial and non-inertial reference frames.
(2)	 The speed of light c (299,792.46 km/s) in a vac-

uum is a constant and does not depend on the 
motion of the source.

(3)	 Occurrences due to a gravitational mass are 
indistinguishable from occurrences due to an 
inertial mass.

Time dilation

One of the relativity-based errors is caused by the 
time dilation between the satellites’ and the receiv-
er’s clocks. That means the moving clocks beat 

slower than clocks that are stationary (Narkiewicz, 
2007). The effect stems from a Lorentz transforma-
tion that applies to inertial reference frames (Wil-
liams, 1968). Most trivial derivations of the formula 
for time dilation are as follows: imagine a vehicle 
moving at velocity V. A flashlight is inserted on the 
floor of the considered vehicle and a single light 
impulse is emitted towards a mirror set on the very 
opposite of the torch, onto the celling. The impulse 
is hence reflected and the time of the operation is 
recorded. There are two particular observers of the 
ongoing action: one bound with the frame of the 
vehicle (inside) and the other outside and stationary. 
The situation is pictured in the Figure 2.

Figure 2. Situation A shows how the route of the flash 
impulse is seen by a keen observer not bound with the iner-
tial frame of the vehicle. Contrastingly, situation B shows the 
light pulse as observed within the frame

The point is that although the same event is 
observed by both people, different routes of the light 
impulse are perceived. For both situations, a simple 
equation can be written. For situation A, it is:
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Equations (2) and (3) can be further expressed as 
follows:
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From both (4) and (5), the final formula for time 
dilation in Lorentz transformation is derived:
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This formula states the size of the error based on the 
time-dilation process. Specifically, it shows that for 
every piece of time that flows on Earth a change of:
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occurs on the orbit of the SV. That means that a clock 
there is slower than a clock on the surface. The new-
born error must be naturally compensated in order 
to maintain the agreement between the clocks and to 
secure the precise position determination. 

To finalize this error analysis, the velocity of the 
satellite vehicle is to be calculated and inserted into 
formula (8). From Kepler’s Third Law, the period of 
revolution in Earth’s gravitational field can be calcu-
lated as (Williams, 1968):
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where G = 6.6740831·10–11 m3/kg·s2 is the gravita-
tional constant, mE = 5.9722·1024 kg is the mass of 
Earth, e is the semi-major axis of concrete SV, and 
T is its period of revolution. From that, the period of 
revolution is used to determine the orbital speed of 
a SV:

	
T
ev π2


 

 

	 (10)

Substituting e = 2.65594·107 m (for GPS satellites), 
it is found that T  =  43,077 s. Consequently, the 
velocity is 3,873.95 m/s. Finally, the clock error due 
to time dilation is calculated as following:
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To calculate this offset for a particular time, it needs 
to be integrated:
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For instance, this effect after one day (86,400 sec-
onds) causes a clock offset of about 7.21 μs, which 
therefore would result in an astonishingly large error 
of 2,163 meters.

Gravitational frequency shift

Somewhat more complex is the problem of light 
travel through space-time. The gravitational field is 
conservative and stems from the pure mass of induc-
ing the object (Williams, 1968). In 1687, Sir Isaak 
Newton articulated his Law of Gravitation, which 
is as follows: “Every particle of matter in the uni-
verse attracts every other particle with a force that is 
directly proportional to the product of the masses of 
the particles and inversely proportional to the square 
of the distance between them”.

Mathematically, this is expressed with:
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where r is the distance between two particular mass-
es m1 and m2. More importantly to the studied case, 
it can be also stated as:

	 ngravitationgravitatio UF

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which means the gravitational force is the negative 
gradient of the gravitational potential energy (Wil-
liams, 1968). Further, the potential energy can be 
calculated as the gravitational potential multiplied 
by the elementary mass:

	 Ugravitation = Φg m	 (15)

Earth may be considered a perfect sphere in 
regards to an induced gravitational field, to a good 
approximation. Thus, the gravitational interactions 
involving such a spherical body can be treated as if 
all the mass was concentrated at the center of the 
object. That said, it is easy to derive the formula for 
gravitational potential energy within Earth’s field 
(by integrating (13) over distance):
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In order to understand errors in satellite naviga-
tion positioning caused by gravitational frequency 
shift, consider a particle of light (an electromagnet-
ic impulse) that is emitted at point A and received 
at point B (Figure 3). Upon travelling the described 
distance, the signal leaves a quasi-potential surface 
of energy, amounted to:
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and enters a significantly stronger field of:
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The electromagnetic wave (photon) itself has 
an energy proportional to its frequency (Williams, 
1968), by:

	 E = h v	 (19)

and, on the other hand, its energy is described by 
Einstein’s best known equation:

	 E = m c2	 (20)

Since there is conservation of energy, the over-
all energy must be stated as a constant function of 
distance from the mass inducting the gravitational 
field. That means that the overall energy of a signal 
at point A must precisely equal the energy at point B:

	 EA = EB	 (21)

Yet there is a significant change in the gravitational 
potential energy:

	 ΔU = UA – UB	 (22)

	 ΔU = ΔΦg m	 (23)

Having that formulated, it is now possible to com-
pare the energy of the impulse from positions A and 
B. In order to maintain the same amount of energy, 
the frequency of the electromagnetic wave changes, 
thereby compensating for the deficit of gravitational 
potential energy. By comparing the energy at point 
A and B, the exact gravitational frequency shift can 
be derived:
	 h vA = h vB + ΔΦg m	 (24)
Putting:
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in (24) for m will result in:
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and eventually:
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Hence, with the change of the gravitational field, 
the received frequency of the light signal changes 
according to (28). This phenomenon is recognized 
within the general theory of relativity and is referred 
to as gravitational frequency shift or gravitational 
redshift. 

This model was labeled as one with good approx-
imation but for the purposes of this study a deep-
er insight is needed, as far as Earth’s gravitational 
field is concerned. Equation (16) shows, for an ide-
ally-spherical body, the distribution of gravitational 
potential as a function of only distance from the cen-
ter of the mass. Adding to this the fact that Earth is 
a geoid of a complex structure, the equation would 
be:
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where: r is the distance from the center of the Earth’s 
mass, θ is the polar angle measured downward from 
the axis of rotational symmetry, J is earth’s quad-
rupole moment coefficient, and P2 is the Legendre 
polynomial of degree 2, which stands for:
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On the whole, the time rate is lower in a more 
intense gravity field; hence on the surface of Earth, 
a clock will run slower than on the orbit of the SV. 
Since the formula has been derived, the real error of 
this kind may be calculated. To calculate it, only the 
height (altitude) of the satellite is needed, as it is the 
only variable contributing to the change of gravita-
tional field. Using H = 20,162 km, θ = 90°–55° (as for 
GPS SV), J = 1.08263·10–3, and RE = 6378.14 km, 
the error is found to be:
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Similarly to (12), in order to gain a numerical value 
of a one-day offset, (32) needs to be integrated over 
time:

Figure 3. The change of gravitational potential energy as an 
object approaches the Earth’s center of mass
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Comparing this effect to the time dilation after 
one day (86,400 seconds), it causes a clock offset 
of about 45.65 , which therefore would result in an 
even larger error of 13,685.53 meters.

Overall offset and other effects

It is important to emphasize that, interestingly, 
the relative-error effects derived from time dila-
tion and gravitational frequency shift have opposite 
signs and are diminishing themselves (Narkiewicz, 
1999; 2007). That is to say that a detailed calcula-
tion may prove that at the height of about 6,000 km, 
the effects would counteract each other (Narkiewicz, 
2007). That fact notwithstanding, the overall relativ-
istic effect in a satellite navigational system can be 
calculated from an integral, which is a combination 
of (12) and (33):
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For GPS satellites, the overall error is calculat-
ed as 38.44 μs/day or Δf/f = 4.4486·10–10. Since this 
clock offset tends to decrease the quality of service 

and is omnipresent, GPS frequency is modified in 
a  way that the frequency of satellite vehicles of 
Global Positioning System on Earth would be mea-
sured as:

	 10.23 MHz – 10.23 MHz · 4.4486·10–10 =  
	 = 10.2299999954491 MHz	 (35)

Thanks to this effect, a receiver on Earth is capable 
of receiving a standard frequency of 10.23 MHz. The 
value of the change calculated in (35) is nearly equal 
to the one stated by Narkiewicz (2007). It is possible 
to calculate that daily clocks on SVs are slowed by  
4.4486·10–10·86,400 s = 38.436 μs. The greatest part 
of the relativity-based error is thus removed and 
compensated, albeit other types of errors are still 
present, nonetheless of lesser significance. These 
are Sagnac effects and the periodic tidal effect of the 
Moon and Sun. But then again, they are removed by 
way of signal processing in the receiver using fol-
lowing equations:
	 t = tSV – ΔtSV	 (36)
	 ΔtSV = A0 + A1 (t – t0) + A2 (t – t0)2	 (37)

where: A0, A1, and A2 are coefficients of the provided 
polynomial and are directly transferred via the GPS 
message, and t0 is the referent time. Ultimately, there 
is the eccentricity-effect correction, which is mathe-
matically specified with the formula:

	 EaFetSV sin  
 

	 (38)

where: F, e, and E are parameters of the satellite and 
are also taken from the GPS message, while F is 
a system constant = 4.442807·10–10 s·m–0.5.

Table 1. Satellite parameters and corresponding to them relativistic effects for major GNSSs (Dana, 1995; FindTheData, 2016; 
GSC, 2016; IAC, 2016; ILRS, 2016; N2YO, 2016; PosiTim, 2010; SatelliteCoverage, 2016; Spaceflight Insider, 2015)

Factor GPS GLONASS Galileo Beidou Compass IRNSS
Satellite’s name / number GPS IIF 13 Galileo-101 COMPASS-M3 IRNSS-1A
Orbit MEO MEO MEO MEO GEO
Semi-Major axis [km] 26559.4 25508 29599.8 21528 42164
Altitude [km] 20183.5 19132 23014.5 21527.5 35786
Perigee [km] 19652 18622 23013 21460 35707
Apogee [km] 20715 19642 23016 21595 35884.7
Eccentricity 0.002 0.00085 0.001 0.0025 0.0002
Inclination [rad] 0.95 1.13 0.97 0.95 0.51
Period of revolution [s] 43077.6 40543.9 50688 46403.4 86172
Average velocity [m/s] 3873.95 3669.598826 3952.981413 3779.324488 3074.624434

Relativistic effect GPS GLONASS Galileo Beidou Compass IRNSS
Frequency change of time dilationΔf/f [s/s] –8.34903E–11 –7.49145E–11 –8.69317E–11 –7.94615E–11 –5.25912E–11
Time dilation[µs per day] –7.21 –6.47 –7.51 –6.86 –4.54
Gravitational frequency change Δf/f [s/s] 5.28355E–10 5.21454E–10 5.44268E–10 5.36396E–10 5.90633E–10
Gravitational redshift [µs per day] 45.65 45.05 47.02 46.34 51.03
Total relativistic offset [µs per day] 38.44 38.58 39.51 39.48 46.49
Total relativistic offset [km per day] 11.52 11.56 11.84 11.83 13.94
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Numerical data

Using formulas derived in previous sections 
of this paper, the specific, relativistic clock offsets 
were calculated by the author. It is also important to 
note that each error and its value is strictly individ-
ual and depends on the characteristics of a partic-
ular SV’s orbit. In the Table 1 most basic and sig-
nificant parameters of different satellite systems are 
collected, as well as time-dilation error and gravita-
tional-frequency shift error are calculated for those 
GNSSs using data published by authorized sources 
for particular SVs. All constants used in calcula-
tions are those used and stated previously; that also 
applies to the formulas themselves.

Conclusions

In order to maintain precise positioning, the rel-
ativistic effects need to be taken into consideration 
and thoroughly calculated. All of the currently-used, 
global-navigation satellite systems base their work-
ing schema on the concept of clock synchronization 
to receivers within Earth’s inertial reference frame. 
However, since their value stems from each orbit’s 
constellation numerical parameters, relativistic 
errors of different GNSS have comparable values. 
Nonetheless, clocks’ offsets are too significant to be 
ignored and ways of reducing them are presented, 
thus making diminishment of the error forced by the 
very forces of gravitation possible.
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