PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Konstrukcje tranzystorów HEMT AlGaN/GaN/Si przeznaczonych dla elektroniki mocy

Identyfikatory
Warianty tytułu
EN
Designs of AlGaN/GaN/Si High Electron Mobility Transistors for power electronics
Języki publikacji
PL
Abstrakty
PL
Parametry elektrofizyczne azotku galu wytwarzanego w postaci warstw epitaksjalnych na krzemie oraz dostępność podłoży krzemowych o dużej średnicy sprawiają, że tranzystory HEMT AlGaN/GaN/Si stanowią poważną konkurencję dla przyrządów krzemowych w układach dla energoelektroniki nowej generacji. W pracy omówiono różne konstrukcje tranzystorów HEMT AlGaN/GaN/Si przeznaczonych dla elektroniki mocy. Przedstawiono podstawowe operacje technologiczne prowadzące do uzyskania tranzystorów z kanałem wzbogacanym o dużej wartości napięcia przebicia i możliwie małym prądzie zaporowym.
EN
It is believed that, owing to excellent electro-physical parameters of gallium nitride and availability of large diameter silicon substrates, AlGaN/GaN/Si HEMTs will replace silicon transistors in the next generation power electronic devices. In this work we discusse the Al- GaN/GaN/Si HEMT structures design for power electronics and give an overwiev of basic methods of obtaining normally-off operation and increasing the breakdown voltage as well as reducing the impact of the silicon substrate on the leakage currents.
Rocznik
Strony
23--26
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Instytut Technologii Elektronowej, Warszawa
  • Politechnika Warszawska, Instytut Mikroelektroniki i Optoelektroniki
autor
  • Instytut Technologii Elektronowej, Warszawa
autor
  • Instytut Technologii Elektronowej, Warszawa
  • Politechnika Warszawska, Instytut Mikroelektroniki i Optoelektroniki
  • Instytut Technologii Elektronowej, Warszawa
Bibliografia
  • [1] U. K. Mishra, P. Parikh, Y.-F. Wu, “AlGaN/GaN HEMTs-an overview of device operation and applications,” Proc.-IEEE, vol. 90, no. 6, pp. 1022–1031, 2002.
  • [2] A. Dadgar, “Sixteen years GaN on Si: Sixteen years GaN on Si,” Phys. Status Solidi B, Feb. 2015.
  • [3] D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, and K. Matsumoto, “Uniform Growth of AlGaN/GaN High Electron Mobility Transistors on 200 mm Silicon (111) Substrate,” Appl. Phys. Express, vol. 6, no. 2, p. 026501, Feb. 2013.
  • [4] O. Hilt, E. Bahat-Treidel, F. Brunner, A. Knauer, R. Zhytnytska, P. Kotara, and J. Wuerfl, “Normally-off GaN Transistors for Power Applications,” J. Phys. Conf. Ser., vol. 494, p. 012001, Apr. 2014.
  • [5] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate Injection Transistor (GIT)- A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393–3399, 2007.
  • [6] T. Deguchi, T. Kikuchi, M. Arai, K. Yamasaki, and T. Egawa, “High On/Off Current Ratio p-InGaN/AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, no. 9, pp. 1249–1251, Sep. 2012.
  • [7] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2207–2215, Sep. 2006.
  • [8] S. D. Burnham, K. Boutros, P. Hashimoto, C. Butler, D. W. S. Wong, M. Hu, and M. Micovic, “Gate-recessed normally-off GaN-on- Si HEMT using a new O2-BCl3 digital etching technique,” Phys. Status Solidi C, vol. 7, no. 7–8, pp. 2010–2012, Jun. 2010.
  • [9] Ki-Sik Im, Jong-Bong Ha, Ki-Won Kim, Jong-Sub Lee, Dong- Seok Kim, Sung-Ho Hahm, and Jung-Hee Lee, “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 192–194, Mar. 2010.
  • [10] B. J. Baliga, “Gallium nitride devices for power electronic applications,” Semicond. Sci. Technol., vol. 28, no. 7, p. 074011, Jul. 2013.
  • [11] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J.-B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin, and U.-I. Chung, “p-GaN Gate HEMTs With Tungsten Gate Metal for High Threshold Voltage and Low Gate Current,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 202–204, Feb. 2013.
  • [12] W.-W. Sun, X.-F. Zheng, S. Fan, C. Wang, M. Du, K. Zhang, W.-W. Chen, Y.-R. Cao, W. Mao, X.-H. Ma, J.-C. Zhang, and Y. Hao, “Degradation mechanism of enhancement-mode AlGaN/ GaN HEMTs using fluorine ion implantation under the on-state gate overdrive stress,” Chin. Phys. B, vol. 24, no. 1, p. 017303, Jan. 2015.
  • [13] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-κ Gate Dielectrics,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 189–191, Mar. 2010.
  • [14] M. Wang, Y. Wang, C. Zhang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “900 V/1.6 mΩcm2 Normally Off Al2O3/GaN MOSFET on Silicon Substrate,” IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 2035–2040, Jun. 2014.
  • [15] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370–1372, Nov. 2013.
  • [16] N. Ikeda, S. Kaya, J. Li, T. Kokawa, M. Masuda, and S. Katoh, “High-power AlGaN/GaN MIS-HFETs with field-plates on Si substrates,” 21st International Symposium on Power Semiconductor Devices & IC’s ISPSD 2009., 2009, pp. 251–254.
  • [17] J.-G. Lee, B.-R. Park, H.-J. Lee, M. Lee, K.-S. Seo, and H.-Y. Cha, “State-of-the-Art AlGaN/GaN-on-Si Heterojunction Field Effect Transistors with Dual Field Plates,” Appl. Phys. Express, vol. 5, no. 6, p. 066502, May 2012.
  • [18] D. Visalli, M. Van Hove, J. Derluyn, P. Srivastava, D. Marcon, J. Das, M. R. Leys, S. Degroote, K. Cheng, E. Vandenplas, M. Germain, and G. Borghs, “Limitations of Field Plate Effect Due to the Silicon Substrate in AlGaN/GaN/AlGaN DHFETs,” IEEE Trans. Electron Devices, vol. 57, no. 12, pp. 3333-3339, Dec. 2010.
  • [19] Bin Lu, E. L. Piner, and T. Palacios, “Schottky-Drain Technology for AlGaN/GaN High-Electron Mobility Transistors,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 302–304, Apr. 2010.
  • [20] S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, and S. Yoshida, “C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE,” J. Cryst. Growth, vol. 298, pp. 831–834, Jan. 2007.
  • [21] Y. C. Choi, M. Pophristic, H.-Y. Cha, B. Peres, M. G. Spencer, and L. F. Eastman, “The Effect of an Fe-doped GaN Buffer on Off-State Breakdown Characteristics in AlGaN/GaN HEMTs on Si Substrate,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2926–2931, Dec. 2006.
  • [22] B. Lu and T. Palacios, “High Breakdown (>1500V) AlGaN/GaN HEMTs by Substrate-Transfer Technology,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 951–953, Sep. 2010.
  • [23] P. Srivastava, J. Das, D. Visalli, M. Van Hove, P. E. Malinowski, D. Marcon, S. Lenci, K. Geens, K. Cheng, M. Leys, S. Decoutere, R. P. Mertens, and G. Borghs, “Record Breakdown Voltage (2200 V) of GaN DHFETs on Si With 2-μm Buffer Thickness by Local Substrate Removal,” IEEE Electron Device Lett., vol. 32, no. 1, pp. 30–32, Jan. 2011.
  • [24] M. Van Hove, S. Boulay, S. R. Bahl, S. Stoffels, X. Kang, D. Wellekens, K. Geens, A. Delabie, and S. Decoutere, “CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN MISHEMT on Silicon,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 667–669, May 2012.
Uwagi
PL
Praca naukowa finansowana w ramach programu Ventures Fundacji na Rzecz Nauki Polskiej (VENTURES/2013-11/9) współfinansowanego przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f00d22b6-8666-4b41-9a31-b6534cc4c135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.