
„Zeszyty Naukowe
Uczelni Jana Wyżykowskiego.
Studia z Nauk Technicznych”
2017 (6), s. 171–182.

Real-time detection and mitigation of flood attacks

in SDN networksNevyan Neykov

Summary: Distributed Denial of Service (DDoS) flooding attack threats are becoming more and more
relevant due to the advances in the Software Defined Networks (SDN). This rising trend creates an
emerging need for defense mechanisms against such attacks. In order to address those issues the
following paper focuses primarily on the implementation of an automatic real-time DDoS defense
application based on sFlow technology. Initially we start by constructing a special flow, bound to
a metric in order to capture traffic of interest. As soon as the flow reaches a certain predefined me-
tric level, it is sent to an analyzer. Next we implement a detection algorithm based on the event han-
dling capabilities of the sFlow-RT real-time analyser. Finally, the algorithm is tested with emulation
network Mininet using network traffic, resulting in quick and effective DDoS attack mitigation.

Keywords: SDN; OpenFlow; OpenVSwitch; Mininet; sFlow; DDoS; flood attack; OpenStack

Wykrywanie w czasie rzeczywistym I łniwelowanie masowych ataków w sieciach SDN
Streszczenie: Zagrożenia w wyniku rozproszonej odmowy usługi (DDos) w przypadku masowego
ataku stają się coraz bardziej możliwe z uwagi na rozwój programowalnych sieci (SDN). Ten rosną-
cy trend powoduje konieczność tworzenia mechanizmów obronnych na wypadek takich ataków. W
celu odniesienia sie do takich zagadnień, artykuł ten przede wszystkim skupia się na wdrażaniu au-
tomatycznych, działających w czasie rzeczywistym aplikacji obronnych DDoS, opartych na techno-
logii sFlow. Wstępnie rozpoczynamy od stworzenia określonego przepływu, związanego z pomiarem
w celu wychwycenia jak duże jest zainteresowanie eksploracją danych. Jak tylko przepływ osiągnie
pewien wcześniej określony poziom, informacja zostaje wysłana do analityka. Następnie wdrażamy
algorytm wykrywania, w oparciu o zdarzenie, który posiada funkcje analityka sFlow dzialajacego w
czasie rzeczywistym. Na koniec testuje się algorytm przy wykorzystaniu emulacyjnej sieci Mininet,
wykorzystującej eksplorację danych, co w rezultacie szybko i w efektywny sposób niweluje masowy
atak DDoS.

Słowa kluczowe: SDN, OpenFlow, OpenVSwitch, Mininet, sFlow, DDoS; atak masowy,

NEVYAN NEYKOV
University of Economics Varna, Bulgaria

6 Zeszyty techniczne.indb 1716 Zeszyty techniczne.indb 171 2018-03-15 13:19:412018-03-15 13:19:41

Nevyan Neykov

172

 1. Introduction

DDoS attacks are becoming more and more common nowadays. They are hard to

block because of their distributed nature. With the advance of Software Defined Networks

(SDN) the applications operating within cloud environments demand better protection

against such types of attacks. OpenFlow is widely supported protocol which introduces

flexible programming of network applications inside SDN. The protocol enables con-

troller applications to specify a set of criteria for packet matching and perform actions

to achieve network traffic engineering. From the application standpoint, OpenVSwitch

(OVS) is an open-source switching software that uses OpenFlow, and is supported also

by cloud platforms such as OpenStack, Mininet as virtual network emulation software

and sFlow-RT for flow monitoring. This paper details a practical approach for real-time

analysis, detection and mitigation of DDoS attacks using collaboration between the men-

tioned set of tools.

 2. Literature review
Researchers[1] suggest a pure blocking mechanism for mitigation of DDoS attacks.

The proposed algorithm incorporates features such as temporary increase of hosts’

provided network bandwidth, time limiting the number of sent packets from a single IP

address based on their unique IP time-stamp, as well as usage of echo request packets

informing the source address to slow down the network transfer rate. The concept of

privileged and unprivileged traffic channels, is also being introduced [2] with the aim

to establish undisturbed communication between network hosts using privileged pac-

kets. The proposed lightweight solution creates a special privileged channel by using

two additional negotiation packets between the sending and receiving hosts for each

network round trip. In this scenario routers are being additionally programmed to give

preferential treatment to the privileged packets. Being in privileged mode, the receiver

sends capacity updates to the sender within a certain window of time, allowing for

a possible switch between privileged and unprivileged channels. This way, by halting

certain flows, the receiver controls sender capabilities, and could effectively limit them.

In case of an unprivileged attack, both parties switch into privileged mode and filter out

the attack by dropping its packets.

Moreover the aim and inner workings of an elaborate DDoS attack are revealed in

[3] where botnets target pre-selected link routes, which deliver the vast majority of

traffic to a specified area. Next botnets flood groups of routers with internal packets,

without using the unwanted outside of the AS (autonomous system) traffic. Simultane-

ously the attacker monitors and reacts to network route changes by updating the route

map of the next attack target servers. The successful launch of the attack depends on

several conditions such as:

6 Zeszyty techniczne.indb 1726 Zeszyty techniczne.indb 172 2018-03-15 13:19:412018-03-15 13:19:41

Real-time detection and mitigation of flood attacks in SDN networks

173

keeping a very low rate of adversary flow-rates, to avoid triggering of the network

protection mechanisms;

the attack flow rate should also be higher than the target bandwidth divided by

the maximum number of available flows on the link;

per-flow rate should be less than the maximum flow rate which could be handled

without triggering an alarm;

even distribution of the aggregate attack traffic to multiple hosts, which are care-

fully chosen to be not too close (in less than 3 hops) to the target area.

Although DDoS attacks are inherent to the pure data-plane and impose tracking

difficulties to the SDN controlling plane, some authors suggest traffic engineering mi-

tigation techniques such as traffic re-routing. In this regard papers [4] and [5] reveal

the inherent goal of Crossfire attack to cut off internet connectivity towards a specific

geographic area (target area). Both papers propose solutions for SDN defense against

the attack by rate-limiting malicious sources while keeping the network running, witho-

ut causing any congestion. The proposed process moves through phases such as: moni-

toring, traffic load balancing by rerouting, recording DDoS link sources, detection and

blockage of suspicious sources). Sources are assumed as suspicious, when, after being

pushed away, they return to communicate via the same routes, and are considered as

block candidates. In contrast, in case of route change the normal sources do not readjust

themselves to use the same popular routes as before. Additionally to tame such elabo-

rate attacks the authors [4] propose several stages of malicious flows detection such as:

icmp packets and congested link monitoring where the detection routine tracks a con-

gested link, isolates its source and destination addresses and changes its current route

(route-mutation).

In the current paper we focus our research on the DDoS SYN flood attacks within the

scope of SDN networks. We start by exploring mitigation mechanism differences betwe-

en SDN and traditional networks in order to create a fully functional simulated DDoS ne-

twork attack testbed.

Next we propose, implement and test an SDN defense mechanism against selected

DdoS attacks.

During the preliminary research process in order to cover more-elaborated DDoS at-

tacks such as CrossFire, we have also explored the potential integration of BGP protocol

together with our proposed mitigation mechanism. While at time of writing technical

limitations exist when integrating Quagga BGP routing protocol with MiniNet virtual

networks in particular when using OpenVSwitch virtual routers, we foresee performing

future tests using free simulation testbeds such as Cumulus VX .

6 Zeszyty techniczne.indb 1736 Zeszyty techniczne.indb 173 2018-03-15 13:19:412018-03-15 13:19:41

Nevyan Neykov

174

 3. Background

Control and data planes

Usually in SDN two planes exist: control – operated by the controller and data ope-

rated by switching and routing devices (fig.1). The controller is responsible for packets’

logical management and can be programmed, while routers and switches are used for

forwarding purposes only. Those features allow decoupling of the running network traf-

fic. OpenFlow is one of the first SDN standards and by definition [13] is a programmable

network, protocol is designed to manage traffic among both physical and virtual routers

and switches. OpenFlow is also open-source and enables the controller to directly inte-

ract with switches and routers via flows.

Fig. 1. Planes and communication

B. Packets, flows and tables

In order to perform packet forwarding, switches maintain flow tables consisting of

flow entries. A flow record summarizes a set of packets that share common attributes.

Each flow entry consists of match fields (the packet’s incoming interface port, source and

destination ports, ip and MAC addresses, type of networking protocol) statistics (cookie

information tracking the flow, duration, what table the flow has to go to next, the size of

the flow, counter usage log e.g. when packets match the flow rules this counter is incre-

ased, priority, idle and hard timeouts), as well as actions applied to the flow.

When a switch receives its first data packet from a host, it performs a lookup ope-

ration at its flow table, using the packet’s header characteristics. In case there is no

matching entry, the packet flow is forwarded via OpenFlow protocol to the controller

for a decision on what action is to be applied further, and is returned to the data path.

Actions can be forwarded to another port, controller or drop (fig.2).

Fig. 2. Packets, flows and tables

6 Zeszyty techniczne.indb 1746 Zeszyty techniczne.indb 174 2018-03-15 13:19:412018-03-15 13:19:41

Real-time detection and mitigation of flood attacks in SDN networks

175

 4. Tools

The following is a quick summary of the main tools used in the lab setup.

A. OpenVSwitch

OpenVSwitch is OpenFlow supporting open-source virtual switch, designed to enable

network automation through programmatic extension while supporting standard inter-

faces and protocols [14]. It is specifically tailored to function in virtualized environments.

In cloud infrastructure systems such as OpenStack, hypervisors have the ability to brid-

ge traffic between virtual machines and the outside world. In single hosted Linux envi-

ronments this function is carried by the built-in bridge, which is fast and reliable, while

OpenVSwitch targets multi-server virtualization deployments. OpenVSwitch support s

both configuring and migrating configuration and network states between instances, as

well as allowing network control systems such as NetFlow, IPFIX, and sFlow to respond

and adapt to environment changes. Connections between various hosts and the switch

are realized through ports (s1-eth1, s1-eth2, s1-eth3), where s1 is the name of the switch,

and ‚s1-ethX’ are the network interfaces. Ports connect the host network interface to the

switch via the virtual bridge (fig.3).

Fig. 3. OpenVSwitch architecture

B. Mininet
MiniNet is a network emulator which can create virtual kernel or user-space switches,

controllers and hosts that are able to communicate over the emulated network via virtual

link pairs [15]. MiniNet supports OpenFlow protocol and has built in OpenVSwitch con-

troller. Emulated networks run real Linux network applications and provide Linux kernel

and networking stack for development purposes. Because of its inherent features, the

code, which runs on Mininet, could with minimal changes be transferred directly to har-

dware switches.

6 Zeszyty techniczne.indb 1756 Zeszyty techniczne.indb 175 2018-03-15 13:19:422018-03-15 13:19:42

Nevyan Neykov

176

C. sFlow

sFlow is a technology for traffic monitoring of virtual and real networks[8], and de-

fines traffic sampling mechanisms, implemented in sFlow agents. Agents are attached

to network switches and carry traffic measurement data to a common sFlow Collector.

During the process of data gathering, a stream of packet headers is sampled and decoded

to extract fields of interest, later forming a flow record cache. Then each incoming flow

record is looked up inside the flow cache in order to be updated or saved. Based on pro-

tocol information such as FIN flag, a timeout, inactivity, or when the cache is full, records

are flushed from the cache and sent to traffic analysis application. The monitor, decode,

hash, flow cache and flush functionality are moved out of the switch to a central sFlow

analyzer (collector), which can run on a server with relatively abundant resources, thus

safely supporting large numbers of requests without a risk of network destabilization.

D. Sflow-RT

sFlow-RT[11][12] is an open-source product that has an embedded OpenFlow control-

ler, allowing monitoring and flows insertions to OpenFlow supporting switches. It can

listen on certain events of interest, raise triggers and apply traffic handling rules to a par-

ticular controller. Event handling in sFlow consists of three steps:

1. Set up a flow to capture traffic parameters of interest.

2. Create a metric to summarize a flow, coupled with a threshold.

3. Raise an event and attach an event handler, when a certain threshold level is reached.

E. Integrated hybrid OpenFlow[12]

In order to integrate our testbed with Mininet, we have to clarify that Mininet flow

forwarding rules are internally working with two tables. Table 0 has a rule to look up rules

from table 1, which implement equal-cost multipath (ECMP) forwarding [18]. ECMP for-

warding forms when a routing table contains multiple next-hop addresses for one desti-

nation with same preference and metric values.

By default, all traffic is handled by the switch’s normal switching and routing func-

tions without any intervention from the controller. OpenFlow rules are then used to over-

ride the normal forwarding behavior for the selected flow. This is achieved by adding high

priority rules to table 0. The current setup via the file (leafandspine-hybrid.js) emulates

the hybrid OpenFlow NORMAL action by rewriting it to jump to table 1 that contains the

ECMP forwarding rules. Such an approach is extremely scalable and robust with a mini-

mal overhead associated with maintaining OpenFlow connections between the control-

ler and the switches. Moreover the network will still continue to forward traffic if the

controller fails. Because the switches have fully populated forwarding tables, packet_in

events are never sent to the controller.

6 Zeszyty techniczne.indb 1766 Zeszyty techniczne.indb 176 2018-03-15 13:19:422018-03-15 13:19:42

Real-time detection and mitigation of flood attacks in SDN networks

177

Fig. 4. Traffic monitoring

 5. Implementation

The software used in the experimental setup is carefully chosen, based on the sup-

port of the OpenVSwitch controller. For the networking testbed we will be using Mininet

installed on a VirtualBox[16] emulated machine running Ubuntu Linux[6] together with

the real-time network analyzer sFlow-RT.

Fig. 5. Event handling

In order for sFlow-RT to analyze and react to traffic changes, it has to be configured

to work together with the existing network (fig.4, fig.5). This is done by installing sam-

pling agent(s) and attaching them to the switches we would like to monitor. Then we cre-

ate a logical bridge port (sFlow) which copies and sends sFlow traffic from a particular

switch (s1), sampled by sFlow agent/s (eth0) to sFlow collector (127.0.0.1). On OpenFlow

supporting switches this can be achieved running the following commands from the s1

OpenVSwitch:

to connect OpenVSwitch to OpenFlow controller: ovs-vsctl set-controller

s1 tcp:10.0.0.1:6633

to connect OpenVSwitch to sFlow-RT analyzer : sudo ovs-vsctl -\- --id=@

sFlow create sFlow agent=eth0 target=\”127.0.0.1:6343\” sam-

pling=2 polling=20 -\- -\- set bridge s1 sFlow=@sFlow

6 Zeszyty techniczne.indb 1776 Zeszyty techniczne.indb 177 2018-03-15 13:19:422018-03-15 13:19:42

Nevyan Neykov

178

Next we do additional refinements to the setup, due to the fact that MiniNet is a vir-

tual networking environment emulator. Initially the virtual network topology has to be

exported in order to be understood by sFlow. For this reason we install an Apache server

to provide a directory /var/www/html that can be remotely retrieved via HTTP protocol by

sFlow: sudo apt-get install apache2

Then we run Mininet, specify the address of collector and controller, as well as the

type and size of the custom network we are creating and at the same time we export the

network topology as JSON[12] file to the sFlow collector

sudo ./leafandspine.py –-collector=127.0.0.1 --controller=127.0.0.1

--leaf=1 --spine=1 --fanout 3

 --topofi le=/var/www/html/topology.json
(note: the addresses of collector/s and controller can differ)

In the script provided by sFlow-RT the number of leaf and spine switches, as well as

the number of hosts per leaf can be modified. In leaf and spine architecture (fig.6) all the

switches are interconnected within the network fabric. This minimizes latency and bot-

tlenecks because each packet has to only travel to spine and another leaf switch to reach

its endpoint.

Fig. 6. Leaf and spine topology1

 Next we start the real-time sFlow analyzer to monitor the collected traffic data sam-

ples: ./sFlow-rt/start.sh and periodically check whether Mininet topology is loaded into

sFlow-RT http://localhost:8008/topology/json, and if not we push it using Curl: curl -H

“Content-Type: application/json” -X PUT --data @/var/www/html/topology.json http://lo-

calhost:8008/topology/json

DDoS flood attack

In this type of network attack (fig.7), the attacker uses a command and control ne-

twork to instruct large numbers of compromised systems to send traffic to a designa-

ted target aiming to overwhelm the target infrastructure and deny access to its legiti-

mate users.

1 http://searchdatacenter.techtarget.com/definition/Leaf-spine leaf-spine architecture

6 Zeszyty techniczne.indb 1786 Zeszyty techniczne.indb 178 2018-03-15 13:19:422018-03-15 13:19:42

Real-time detection and mitigation of flood attacks in SDN networks

179

Fig. 7. Visualization of the simulated network attack topology using HP VAN SDN controller [19]

An ICMP DDoS flood attack can be realized using the command: ping -f 10.0.0.2 ran

from several MiniNet hosts. The following is a sample output from the sFlow analyzer on

a network under attack:

./start.sh

INFO: Listening, OpenFlow port 6633

INFO: Listening, sFlow port 6343

INFO: OF: connected to 127.0.0.1:59165 using OF 1.3

INFO: OF: connected to 127.0.0.1:59168 using OF 1.3

INFO: OF: connected to 127.0.0.1:59167 using OF 1.3

INFO: OF: connected to 127.0.0.1:59166 using OF 1.3

INFO: OF1.3: 127.0.0.1:59168 = datapath 0000000000000001

INFO: OF1.3: datapath 0000000000000001 added to

INFO: Starting the Jetty [HTTP/1.1] server on port INFO: Star-

ting com.sFlow.rt.rest.sFlowApplication application

INFO: Listening, http://localhost:8008

INFO: mark.js started

INFO: Lead and spine hybrid mode enabled

INFO: [“11”,”2048”,”000400000002”,”000400000001”,”1”,”10.0.0.2”,

”10.0.0.1”]

6 Zeszyty techniczne.indb 1796 Zeszyty techniczne.indb 179 2018-03-15 13:19:422018-03-15 13:19:42

Nevyan Neykov

180

INFO: blocking {“priority”:500,”idleTimeout”:20,”hardTi-

meout”:3600,”match”:{“in_port”:”4”,”dl_type”:2048,”ip_proto-

”:17,”nw_src”:”10.0.0.1”},”actions”:[]}

INFO:[“9”,”2048”,”000400000001”,”000400000002”,”1”,”10.0.0.1”,”1

0.0.0.2”]

INFO: blocking {“priority”:500,”idleTimeout”:20,”hardTime-

out”:3600,”match”:{“in_port”:”3”,”dl_type”:2048,”ip_proto-

”:17,”nw_src”:”10.0.0.2”},”actions”:[]}

From the log it can be seen that the sFlow controller starts and listens to OpenFlow

and sFlow flows. Ports and data paths (addresses of the OpenVSwitch) are properly reco-

gnized and added to sFlow. Then the monitoring server on http://localhost/8008 and our

DDoS detection and mitigation script (mark.js) are started. In case of a custom SYN flood

event from the log, we see how the script mark.js adds to the controller a new blocking

flow (i.e. rule without action) for the particular traffic source.

When performing tests with simulated SYN flood traffic, averaging 48 Mbits/sec., Fig.

8 shows that in a matter of 2-3 seconds the system blocks the traffic due to its real-time

proactive response.

Fig. 8. Real-time monitoring of network interface traffic under attack

Conclusions and future work

 Advances in software defined networks (SDN) provide researchers with access to

abundant information about hosts and the surrounding routing network topologies. At

the same time, when compared to conventional networks, explorations of complex ne-

twork attacks within SDN environments built entirely of virtual appliances create major

technical challenges.

6 Zeszyty techniczne.indb 1806 Zeszyty techniczne.indb 180 2018-03-15 13:19:432018-03-15 13:19:43

Real-time detection and mitigation of flood attacks in SDN networks

181

The motivation behind the current paper was to develop and validate practical real-

time protection against a particular DDoS syn flood attack within a simulated SDN envi-

ronment. We demonstrate a simulated SYN flood attack (seen in the generated output

chart), as well as the point where the controller uses our detecting script to proactively

filter out the SYN flood type of traffic, effectively proving that when a new attack is being

launched, it could be immediately detected and filtered. As a result, the suggested appro-

ach protects the link channel, allowing normal traffic to reach the network.

The paper also presents novelties in the development approach of flow processing

and filtering mechanisms such as the usage of sFlow-RT embedded OpenFlow handling

capabilities, without the help of an additional SDN controller such as Floodlight.

The testbed setup uses one switch to guard one link, but the proposed solution can

be easily scaled out and applied to any OpenVSwitch installation including those inhe-

rent to OpenStack Neutron in order to provide an automated solution for effective cloud

based flood attacks mitigation. The current work could be further expanded with respect

to advanced DDoS attack mitigation techniques that target Crossfire types of attacks.

Approaches in this direction include sending blocking messages to neighboring BGP ro-

uters, as well as with the help of SDN Traceroute project [20], to trace and re-route conge-

sted traffic of interest, and block re-occurring persistent route attempts that occur within

short periods of time.

Bibliography
1[1] S. Singh, R. A. Khan and A. Agrawal, „Prevention mechanism for infrastructure based Denial-of-

Service attack over software Defined Network,” International Conference on Computing, Com-
munication & Automation, Noida, 2015, pp. 348-353.

1[2] A. Yaar, A. Perrig and D. Song, “SIFF: a stateless Internet flow filter to mitigate DDoS flooding
attacks,” IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004, 2004, pp. 130-143.

1[3] M. S. Kang, S. B. Lee and V. D. Gligor, “The Crossfire Attack,” 2013 IEEE Symposium on Security and
Privacy, Berkeley, CA, 2013, pp. 127-141.

1[4] A. Aydeger, N. Saputro, K. Akkaya and M. Rahman, “Mitigating Crossfire Attacks Using SDN-Based
Moving Target Defense,” 2016 IEEE 41st Conference on Local Computer Networks (LCN), Dubai,
2016, pp. 627-630.

1[5] Gkounis, D., Kotronis, V. and Dimitropoulos, X., 2014. Towards defeating the crossfire attack
using SDN. arXiv preprint arXiv:1412.2013.

1[6] Helmke, Matthew. Ubuntu Unleashed 2016 Edition: Covering 15.10 and 16.04. Sams publishing,
2016.

1[7] Jakub, Libosvar and Rodolfo, Alonso. “Tired of iptables based security groups? Here’s how to
gain tremendous speed with OpenVSwitch instead!”, URL: https://www.openstack.org/assets/
presentation-media/Austin-Summit-SG-firewall-Presentation-v2.3.pdf, 2016.

1[8] Phaal, Peter, and Ben Pfaff. “sFlow OpenFlow Structures” Specification. sFlow. Org, 2014.

6 Zeszyty techniczne.indb 1816 Zeszyty techniczne.indb 181 2018-03-15 13:19:432018-03-15 13:19:43

Nevyan Neykov

182

1[9] Nugraha, Muhammad, Paramita Isyana, Musa Ardiansyah, Choi Deokjai, Cho Buseung. “Utilizing
OpenFlow and sFlow to Detect and Mitigate SYN Flooding Attack.” Journal of Korea Multimedia
Society 17.8, pp. 988-994, 2014.

[10] McKeown, Nick, et al. “OpenFlow: enabling innovation in campus networks.” ACM SIGCOMM
Computer Communication Review 38.2, pp. 69-74, 2008.

[11] Phaal, Peter, and Marc Lavine. “sflow version 5.” Specification. sFlow. Org, 2004.

[12] Phaal, Peter, “Mininet integrated hybrid OpenFlow testbed” URL: http://blog.sflow.com/2014/04/
mininet-integrated-hybrid-openflow.html, 2017.

[13] OpenFlow Switch SpecificationVersion 1.3.1, URL: https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf, 2012.

[14] OVS-ofctl OpenFlow Switch Management Commands, http://OpenVSwitch.org/support/dist-
docs/ovs-ofctl.8.txt , 2016.

[15] Team, Mininet. “Mininet Overview.” URL: http://mininet. org/overview/, 2017.

[16] Oracle, V. M. “VirtualBox.” User Manual. URL: https://www.virtualbox.org/manual/UserManual.
html, 2017.

[17] JSON (JavaScript Object Notation) data-interchange standard. URL: http://www.json.org/, 2017.

[18] ECMP URL: https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing , 2017.

[19] HP VAN SDN controller trial version, URL: https://marketplace.saas.hpe.com/sdn/content/sdn-
controller-free-trial, 2017.

[20] Wang, Y., Bi, J. and Zhang, K., 2017. A tool for tracing network data plane via SDN/OpenFlow.
Science China Information Sciences, 60(2), p.022304.

6 Zeszyty techniczne.indb 1826 Zeszyty techniczne.indb 182 2018-03-15 13:19:442018-03-15 13:19:44

