PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Cold unidirectional/cross‑rolling of austenitic stainless steels: a review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of cold unidirectional/cross-rolling on the development of substructure, strain-induced martensitic transformation, crystallographic texture (preferred orientation), and mechanical properties, as well as the microstructure after subsequent annealing of metastable austenitic stainless steels were overviewed. First, the deformed state was discussed. Compared to unidirectional rolling, it was revealed that cross-rolling leads to the formation of a greater amount of deformation-induced martensite, which is related to the generation of numerous intersecting shear bands and nano-twins, as well as a higher dislocation density in the austenite phase (activation of higher number of slip/twinning systems). It was concluded that these effects are more pronounced at low reductions in thickness. Regarding texture evolution, cross-rolling tends to strengthen the Brass component in the retained austenite phase. Subsequently, the mechanical properties were reviewed, where it was concluded that a more rapid work-hardening and higher strength/hardness at low strains can be obtained due to the effects of cross-rolling on the microstructure. Moreover, while the effects of cross-rolling on the strength at high rolling reductions might not be significant, it is possible to decrease the anisotropy of the sheet due to the alternate change in the rolling direction. Afterward, the annealing of cold-rolled sheets was discussed. It was deduced that cross-rolling might be used for more intense grain refinement based on the thermomechanical processing of cold-rolling and reversion/recrystallization annealing, where the activation of greater number of slip systems, higher dislocation density, and greater martensite content in the deformed state are responsible in this regard. Finally, the suggestions for future works were proposed.
Rocznik
Strony
art. no. e129
Opis fizyczny
Bibliogr. 74 poz., rys., tab., wykr.
Twórcy
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155‑4563, Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155‑4563, Tehran, Iran
Bibliografia
  • 1. Sohrabi MJ, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: a review. Arch Civ Mech Eng. 2020;20:124.
  • 2. Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R Rep. 2009;65:39-104.
  • 3. Padilha AF, Plaut RL, Rios PR. Annealing of cold-worked austenitic stainless steels. ISIJ Int. 2003;43:135-43.
  • 4. Karjalainen LP, Taulavuori T, Sellman M, Kyrolainen A. Some strengthening methods for austenitic stainless steels. Steel Res Int. 2008;79:404-12.
  • 5. Jarvenpaa A, Jaskari M, Kisko A, Karjalainen P. Processing and properties of reversion-treated austenitic stainless steels. Metals. 2020;10:281.
  • 6. Narayanswamy S, Saha R, Bhattacharjee PP. Cross-rolling mediated microstructure and texture evolution in severely cold-rolled and annealed ultrafine pearlite. Mater Charact. 2021;171: 110751.
  • 7. Rout M, Pal SK, Singh SB. Cross rolling: a metal forming process. In: Modern manufacturing engineering. Cham: Springer; 2015, p. 41-64.
  • 8. Catorceno LLC, De Abreu HFG, Padilha AF. Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet. J Magnes Alloy. 2018;6:121-33.
  • 9. Wang L, Chen X, Luo T, Ni H, Mei L, Ren P, Liu Q, Ding Y, Zhao L. Effect of cross cold rolling and annealing on microstructure and texture in pure nickel. Rev Adv Mater Sci. 2020;59:252-63.
  • 10. Soleimani M, Mirzadeh H. Enhanced mechanical properties of dual phase steel via cross rolling and intercritical annealing. Mater Sci Eng, A. 2021;804: 140778.
  • 11. Wang M, Xu T, Zhu Y, Yin W, Guo H, Zhao E, Fang X, Wang W. Evolution of interface character distribution in duplex stainless steel processed by cross-rolling and annealing. J Mater Sci Technol. 2018;34:2160-6.
  • 12. Dandekar TR, Kumar A, Khatirkar RK, Mahadule D, Ayyappan G. Multistep cross rolling of UNS S32101 steel: microstructure, texture, and magnetic properties. J Mater Eng Perform. 2021;30:2916-29.
  • 13. Li X, Al-Samman T, Gottstein G. Mechanical properties and anisotropy of ME20 magnesium sheet produced by unidirectional and cross rolling. Mater Des. 2011;32:4385-93.
  • 14. Suwas S, Gurao NP. Development of microstructures and textures by cross rolling. In: Comprehensive materials processing. vol 3. Amsterdam: Elsevier; 2014, p. 81-106.
  • 15. Nasiri Z, Ghaemifar S, Naghizadeh M, Mirzadeh H. Thermal mechanisms of grain refinement in steels: a review. Met Mater Int. 2021;27:2078-94.
  • 16. Zergani A, Mirzadeh H, Mahmudi R. Unraveling the effect of deformation temperature on the mechanical behavior and transformation-induced plasticity of the SUS304L stainless steel. Steel Res Int. 2020;91:2000114.
  • 17. Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng A. 2020;795: 140023.
  • 18. Tamura I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels, Metal. Science. 1982;16:245-53.
  • 19. Guimaraes JRC, Rios PR. The mechanical-induced martensite transformation in Fe-Ni-C alloys. Acta Mater. 2015;84:436-42.
  • 20. Karthik GM, Kim ES, Sathiyamoorthi P, Zargaran A, Jeong SG, Xiong R, Kang SH, Cho JW, Kim HS. Delayed deformation-induced martensite transformation and enhanced cryogenic tensile properties in laser additive manufactured 316L austenitic stainless steel. Addit Manuf. 2021;47: 102314.
  • 21. Olson GB, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations. J Less Common Met. 1972;28:107-18.
  • 22. Tsuchida N, Morimoto Y, Tonan T, Shibata Y, Fukaura K, Ueji R. Stress-induced martensitic transformation behaviors at various temperatures and their TRIP effects in SUS304 metastable austenitic stainless steel. ISIJ Int. 2011;51:124-9.
  • 23. Naraghi R, Hedstrom P, Borgenstam A. Spontaneous and deformation-induced martensite in austenitic stainless steels with different stability. Steel Res Int. 2011;82:337-45.
  • 24. Jung YS, Lee YK, Matlock DK, Mataya MC. Effect of grain size on strain-induced martensitic transformation start temperature in an ultrafine grained metastable austenitic steel. Met Mater Int. 2011;17:553-6.
  • 25. Talonen J, Hanninen H, Nenonen P, Pape G. Effect of strain rate on the strain-induced γ→ α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall Mater Trans A. 2005;36:421-32.
  • 26. Perdahcıoğlu ES, Geijselaers HJM, Huetink J. Influence of stress state and strain path on deformation induced martensitic transformations. Mater Sci Eng A. 2008;481:727-31.
  • 27. Sun G, Du L, Hu J, Zhang B. Significant influence of rolling modes on martensitic transformation, microstructural evolution and texture development in a 304 stainless steel. Mater Charact. 2020;159: 110073.
  • 28. Eskandari M, Kermanpur A, Najafizadeh A. Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment. Metall and Mater Trans A. 2009;40:2241-9.
  • 29. Rezaee A, Kermanpur A, Najafizadeh A, Moallemi M, Samaei Baghbadorani H. Investigation of cold rolling variables on the formation of strain-induced martensite in 201L stainless steel. Mater Des. 2013;46:49-53.
  • 30. Jiang Y, Zhou X, Li XY. Effects of cross rolling on multiple twinning and martensitic transformation in an austenitic steel. Mater Sci Eng, A. 2021;822: 141703.
  • 31. Bocker A, Klein H, Bunge HJ. Development of cross-rolling textures in AlMn1. Textures Microstruct. 1990;12:155-74.
  • 32. Rout M. Texture-tensile properties correlation of 304 austenitic stainless steel rolled with the change in rolling direction. Mater Res Express. 2020;7: 016563.
  • 33. Nezakat M, Akhiani H, Sabet SM, Szpunar J. Electron backscatter and X-ray diffraction studies on the deformation and annealing textures of austenitic stainless steel 310S. Mater Charact. 2017;123:115-27.
  • 34. Nezakat M, Akhiani H, Hoseini M, Szpunar J. Effect of thermo-mechanical processing on texture evolution in austenitic stainless steel 316L. Mater Charact. 2014;98:10-7.
  • 35. Surikova S, Panin VE, Narkevich NA, Mishin IP, Gordienko AI. Formation of a multilevel hierarchical mesosubstructure by cross rolling and its influence on the mechanical behavior of austenitic steel. Phys Mesomech. 2018;21:430-40.
  • 36. Dieter GE. Mechanical metallurgy. 3rd ed. New York: McGraw-Hill; 1988.
  • 37. Spencer K, Embury JD, Conlon KT, Veron M, Brechet Y. Strengthening via the formation of strain-induced martensite in stainless steels. Mater Sci Eng A. 2004;387:873-81.
  • 38. Olson GB, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A. 1975;6:791-5.
  • 39. Hu J, Marciniak Z, Duncan J. Mechanics of sheet metal forming. Amsterdam: Elsevier; 2002.
  • 40. Zhu J, Liu S, Long D, Liu Y, Lin N, Yuan X, Orlov D. Asymmetric cross rolling: a new technique for alleviating orientation-dependent microstructure inhomogeneity in tantalum sheets. J Market Res. 2020;9:4566-77.
  • 41. Amininejad A, Jamaati R, Hosseinipour SJ. Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling. Mater Sci Eng, A. 2019;767: 138433.
  • 42. Amininejad A, Jamaati R, Hosseinipour SJ. Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling. Mater Chem Phys. 2020;256: 123668.
  • 43. Qin W, Li J, Liu Y, Kang J, Zhu L, Shu D, Peng P, She D, Meng D, Li Y. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Mater Lett. 2019;254:116-9.
  • 44. Ueji R, Tsuji N, Minamino Y, Koizumi Y. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Mater. 2002;50:4177-89.
  • 45. Alibeyki M, Mirzadeh H, Najafi M. Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite. Vacuum. 2018;155:147-52.
  • 46. Xu DM, Li GQ, Wan XL, Misra RDK, Yu JX, Zhang YJ, Xu G. The significant impact of cold deformation on structure-property relationship in phase reversion-induced stainless steels. Mater Charact. 2018;145:157-71.
  • 47. Zareian Z, Emamy M, Malekan M, Mirzadeh H, Kim WJ, Bahmani A. Tailoring the mechanical properties of Mg-Zn magnesium alloy by calcium addition and hot extrusion process. Mater Sci Eng A. 2020;774: 138929.
  • 48. M.S. Geshani, H. Mirzadeh, M.J. Sohrabi, Detailed Hall-Petch analysis of cold rolled and annealed duplex 2205 stainless steel, Steel Research International, in press, DOI: https://doi.org/10.1002/srin.202100676.
  • 49. Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng A. 2019;759:90-6.
  • 50. Shakhova I, Dudko V, Belyakov A, Tsuzaki K, Kaibyshev R. Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel. Mater Sci Eng A. 2012;545:176-86.
  • 51. Nezakat M, Akhiani H, Penttila S, Sabet SM, Szpunar J. Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water. Corros Sci. 2015;94:197-206.
  • 52. Joham R, Sharma NK, Mondal K, Shekhar S. Low temperature cross-rolling to modify grain boundary character distribution and its effect on sensitization of SS304. J Mater Process Technol. 2017;240:324-31.
  • 53. Sohrabi MJ, Mirzadeh H, Dehghanian C. Significance of martensite reversion and austenite stability on the mechanical properties and TRIP effect of austenitic stainless steels. J Mater Eng Perform. 2020;29:3233-42.
  • 54. Naghizadeh M, Mirzadeh H. Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall Mater Trans A. 2018;49:2248-56.
  • 55. Angel T. Formation of martensite in austenitic stainless steels. J Iron Steel Inst. 1954;177:165-74.
  • 56. Noh HS, Kang JH, Kim KM, Kim SJ. Different effects of Ni and Mn on thermodynamic and mechanical stabilities in Cr-Ni-Mn austenitic steels. Metall Mater Trans A. 2019;50:616-24.
  • 57. Sun G, Zhao M, Du L, Wu H. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel. Mater Charact. 2022;184: 111674.
  • 58. Huang CX, Yang G, Wang C, Zhang ZF, Wu SD. Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by equal-channel angular pressing. Metall Mater Trans A. 2011;42:2061-71.
  • 59. Kisko A, Misra RDK, Talonen J, Karjalainen LP. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel. Mater Sci Eng A. 2013;578:408-16.
  • 60. Naghizadeh M, Mirzadeh H. Modeling the kinetics of deformation-induced martensitic transformation in AISI 316 metastable austenitic stainless steel. Vacuum. 2018;157:243-8.
  • 61. Ahmedabadi PM, Kain V. Kinetics parameters for deformation-induced martensitic transformation in austenitic stainless steels. Philos Mag Lett. 2020;100:555-60.
  • 62. Naghizadeh M, Mirzadeh H. Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res Int. 2019;90:1900153.
  • 63. De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283-362.
  • 64. Molnar D, Sun X, Lu S, Li W, Engberg G, Vitos L. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel. Mater Sci Eng A. 2019;759:490-7.
  • 65. Somani MC, Jaskari M, Sadeghpour S, Hu C, Misra RDK, Nyo TT, Yang C, Karjalainen LP. Improving the yield strength of an antibacterial 304Cu austenitic stainless steel by the reversion treatment. Mater Sci Eng, A. 2020;793: 139885.
  • 66. Di Schino A, Salvatori I, Kenny JM. Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J Mater Sci. 2002;37:4561-5.
  • 67. Al-Fadhalah K, Aleem M. Microstructure refinement and mechanical properties of 304 stainless steel by repetitive thermomechanical processing. Metall Mater Trans A. 2018;49:1121-39.
  • 68. Tomimura K, Takaki S, Tokunaga Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels. ISIJ Int. 1991;31:1431-7.
  • 69. Naghizadeh M, Mirzadeh H. Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metall Mater Trans A. 2016;47:4210-6.
  • 70. Shirdel M, Mirzadeh H, Parsa MH. Abnormal grain growth in AISI 304L stainless steel. Mater Charact. 2014;97:11-7.
  • 71. Rout M, Pal SK, Sing SB. Finite element analysis of cross rolling on AISI 304 stainless steel: prediction of stress and strain fields. J Inst Eng (India) Ser C. 2017;98:27-35.
  • 72. Gauzzi F, Montanari R, Principi G, Tata ME. AISI 304 steel: anomalous evolution of martensitic phase following heat treatments at 400 °C. Mater Sci Eng A. 2006;438:202-6.
  • 73. Zhou Z, Wang S, Li J, Li Y, Wu X, Zhu Y. Hardening after annealing in nanostructured 316L stainless steel. Nano Mater Sci. 2020;2:80-2.
  • 74. Montanari R. Increase of martensite content in cold rolled AISI 304 steel produced by annealing at 400 °C. Mater Lett.1990;10:57-61.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0067fdb-d2ca-4e66-95d4-6dddb92a1890
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.