PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analytical model to predict water retention curves for granular materials using the grain-size distribution curve

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work aims to propose a new analytical model intended to predict the water retention curves for granular materials based on data from tensiometric tests. Different analytical models have been used for the evaluation of soil water retention curves so far. It should be noted that the proposed model considers only one criterion in the selection of soils. This criterion is the physical property of particle distribution curve that can be used to determine the values of D50 and CU. In this study, the pore-access size distribution is investigated considering the effect of the coefficient of uniformity of sandy soils that were prepared with different density indexes (0.5, 0.7, and 0.9). Moreover, the proposed model equation is based on the physical properties of soil. This equation made it possible to describe the water retention curve and to estimate the pore-access size distribution without performing any experimental tests. The findings allowed asserting that the uniformity of the particle size curves corresponds to a good uniformity of the pore-access size distribution. In addition, it was revealed that the suction increased as the density index went up, which matches well with the experimental data. Moreover, it may clearly be noted that the distinctive retention properties of unsaturated soils can be observed on the above-mentioned curves. Further, it was found that the ratio of the grain size over the pore-access size increased as the uniformity coefficient augmented.
Wydawca
Rocznik
Strony
354--369
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Civil Engineering Research Laboratory, Biskra University, 07000, Biskra, Algeria
autor
  • Civil Engineering Research Laboratory, Biskra University, 07000, Biskra, Algeria
  • Department of Civil Engineering, University Center of Tipaza, Algeria
  • Laboratory of Material Science and Environment (LMSE), Hassiba Benbouali University of Chlef- Algeria
  • Laboratory of Material Science and Environment (LMSE), Hassiba Benbouali University of Chlef- Algeria
Bibliografia
  • [1] Arya, L. M., Leij, F. J., van Genuchten, M. T., and Shouse, P. J., 1999, “Scaling Parameter to Predict the Soil Water Characteristic from Particle-Size Distribution Data,” Soil Sci. Soc. Am. J., Vol. 63, pp. 510–519.
  • [2] Aubertin, M., Mbonimpa, M., Bussière, B., and Chapuis, R. (2003), A Model to Predict the Water Retention Curve from Basic Geotechnical Properties, Canadian Geotechnical J., 40, 1104–1122.
  • [3] Bastet G., Bruand A., Voltz M., Bornand M., Quétin P., 1999, Performance of available pedotransfer functions for predicting the water retention properties of French soils. In: M. Th. Van Genuchten, F.J.
  • [4] Bastet G., Bruand A., Voltz M., Bornand M., Quéin P., 1998b, Prediction of water retention properties of french soils: performance of available pedotransfer functions and development of new approaches. In: 16th World Congress of Soil Science, 20–26 August 1998, Montpellier.
  • [5] Bigorre F., 2000, Influence de la pédogénèse et de l’usage des sols sur leurs propriétés physiques. Mécanismes d’évolution et éléments de prévision. Thèse. Vandoeuvre-lèsNancy (FRA) : Université Nancy 1 ; 2000. 145.
  • [6] Bruand A., Duval O., Gaillard H., Darthout R., Jamagne M., 1996, Variabilité des propriétés de rétention en eau des sols : Importance de la densité apparente. Etude et Gestion des Sols, 3, 27–40.
  • [7] Bouma J., van Lanen H.A.J., 1987 - Transfer functions and threshold values: from soil characteristics to land qualities. 106–111. In Beek K.J., P.A. Burrough, D.E. McCormack (Ed.) Proc. ISSS/SSSA workshop on quantified land evaluation procedures. Int. Inst. For Aerospace Surv. And Earth Sci. Publ. no. 6. Enschede, the Netherlands.
  • [8] Bouma J. Using Soil Survey Data for Quantitative Land Evaluation. Adv. soil Sci. 1989 :177–213.
  • [9] Bruand A., Duval O., Cousin I., 2004, Estimation des propriétés de rétention en eau des sols à partir de la base de données SOLHYDRO : Une première proposition combinant le type d’horizon, sa texture et sa densité apparente. Etude et Gestion des Sols, 11, 323–334.
  • [10] Buckingham E. On Physically Similar Systems; Illustrations of the Use of Dimensional Equations. Physical Review 1914; 4:345–76.
  • [11] Chen, L., Ghorbani, J., Zhang, C., Dutta, T.T., Kodikara, J., 2021. A novel unified model for volumetric hardening and water retention in unsaturated soils. Comput. Geotech. 140, 104446
  • [12] Craig H. Benson, I. Chiang, Tanit Chalermyanont, and Auckpath Sawangsuriya. 2014, Estimating van Genuchten Parameters α and n for Clean Sands from Particle Size Distribution Data. Geotechnical Special Publication.
  • [13] Cornelis M., Ronsyn J., Van Meirvenne M., Hartmann R., 2001, Evaluation of Pedotransfer Functions for Predicting the Soil Moisture Retention Curve. Soil Sci. Soc. Am J. 65, 638–648.
  • [14] Craig H. Benson, I. Chiang, Tanit Chalermyanont, and Auckpath Sawangsuriya. 2014, Estimating van Genuchten Parameters α and n for Clean Sands from Particle Size Distribution Data. Geotechnical Special Publication.
  • [15] De Jong R., Campbell C.A., Nicholaichuk W., 1983, Water retention equations and their relationship to soil organic matter and particle size distribution for disturbed samples. Can. J. Soil Sci., 63, 291–302.
  • [16] Delage, P. and Cui, Y. J., 2000, “L’eau dans les sols non sature′s (Water in unsaturated soils),” Techniques de l’Ingenieur, Dossier Techniques de l’Ingenieur, l’expertise technique et scientifique de reference C301, Paris, France.
  • [17] Decker, E. L., Frank, B., Suo, Y., and Garoff, S., 1999, “Physics of Contact Angle Measurement,” Colloid Surface A, Vol. 156, pp. 177–189.
  • [18] Dexter A. R., Bird N.R.A., 2001, Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil and Tillage Research, 57, 203–212.
  • [19] Do, D.D. 1998, Adsorption Analysis: Equilibria and Kinetics. World scientific publishing company.
  • [20] Donatelli M., Wösten J.H.M., Belocchi G., Acutis M., Nemes A., Fila G., 2004, Methods to evaluate pedotransfer functions. Elsevier B.V. 30, 357–411.
  • [21] Espinoza, D. N. and Santamarina, J. C., 2010, “Water–CO2 Mineral Systems: Interfacial Tension, Contact Angle, and Diffusion—Implications to CO2 Geological Storage,” Water Resour. Res., Vol. 46, pp. 1–10.
  • [22] Escario, V. and Saez, J. (1986), “The shear strength of partially saturated soils”, Géotechnique, 36, 453–456. Datcheva, M. and Schanz, T. (2003), “Anisotropic bounding surface plasticity with rotational hardening for unsaturated friction material”, Journal de Physique iv, 105, 305–312.
  • [23] Fredlund, D G, Xing, A, and Shangyan H. (1994). “Predicting the permeability function for unsaturated soils using the soil-water characteristic curve.” Can. Geotech. J., 31, 533–546.
  • [24] Fredlund, D. G., and Rahardjo, H. (1993). Soil mechanics for unsaturated soils, Wiley, New York.
  • [25] Feia S, Ghabezloo S, Bruchon JF, Sulem J, Canou J, Dupla JC. Experimental evaluation of the pore-access size distribution of sands. Geotechnical Testing Journal 2014; 37:1–8.
  • [26] Garbulewski, K., and Zakowicz, S. (1995). “Suction as an indicator of soil expansive potential.” Proc., 1st Int. Conf. on Unsaturated Soils, Paris, E. E. Alonso and P. Delage, eds., Vol. 2, Balkema, Rotterdam, 593–597.
  • [27] Georgiadis, K., Potts, D. M., and Zdravkovic, L. (2005). “Threedimensional constitutive model for partially and fully saturated soils.” Int. J. Geomech., 5(3), 244–255.
  • [28] Gupta S.C., Larson W.E., 1979, Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Resources Research, 15, 1633–1635.
  • [29] Hao, X., Ball, B. C., Culley, J. L. B., Carter, M. R., and Parkin, G.W., 2007, “Soil Density and Porosity,” M. R. Carter and E. G. Gregorich, Eds., Soil Sampling and Methods of Analysis, Chap. 57, CRC, Boca Raton, FL.
  • [30] Hillel, D. (1998), Environmental Soil Physics, Academic Press, New York, 771 p.
  • [31] Hoyos, L., and Arduino, P. (2008). “Implicit algorithm for modeling unsaturated soil response in three invariant stress space.” Int. J. Geomech., 8(4), 266–273.
  • [32] Innocentini, M. D. M. and Pandolfelli, V. C., 2001, “Permeable Porosity of Refractory Castables Evaluated by the Water-Expulsion Porosimetry Technique,” J. Am. Ceram. Soc., Vol. 84, pp. 236–238.
  • [33] Jaafar, R. and Likos, W. (2011), Estimating Water Retention Characteristics of Sands from Grain Size Distribution Using Idealized Packing Conditions, Geotechnical Testing J., 34(5), 1–14.
  • [34] Jamagne M., Bétrémieux R., Bégon J.C., Mori A., 1977, Quelques données sur la variabilité dans le milieu naturel de la réserve en eau des sols. Bull. Tech. Inf. 324–325, 627–641.
  • [35] Ji-Peng Wanga, Bertrand Françoisa and Pierre Lambert. (2017), Basic Particle Gradation Parameters to Water Retention Curves of Unsaturated Sandy Soils. 19–23 October 2017, Wuhan, China.
  • [36] Juang, C., and Holtz, R. (1986). Fabric, Pore Size Distribution and Permeability of Sandy Soils, J. Geotechnical Engineering, ASCE, 112(9), 855–868.
  • [37] Liang, R. Y., Rababah, S., and Khasawneh, M. (2008). “Predicting moisture-dependent resilient modulus of cohesive soils using soil suction concept.” J. Transp. Eng., 134(1), 34–40.
  • [38] Lilly A., Wösten J.H.M., Nemes A., Le Bas C., 1999, The development and use of the HYPRES database in Europe. In: MTh van Genuchten & FJ Leij, eds, Characterization and measurement.
  • [39] Likos, W. J. and Jaafar, R., 2013, “Pore-Scale Model for Water Retention and Fluid Partitioning of Partially Saturated Granular Soil,” J. Geotech. Geoenviron. Eng., Vol. 139, pp. 724–737.
  • [40] Lourenc¸o, S. D. N., Gallipoli, D., Augarde, C. E., Toll, D. G., and Fisher, P. C. A., 2012, “Congreve, Formation and Evolution of Water Menisci in Unsaturated Granular Media,” Geotechnique, Vol. 62, pp. 193–199.
  • [41] McQueen, I.S. and Miller, R.F. 1974. Approximating soil moisture characteristics from limited data: empirical evidence and tentative model. Water Resources Research, 10, pp. 521–527.
  • [42] Minasny B., McBratney A.B., Bristow K.L., 1999, Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93, 225–253.
  • [43] Mitchell, J. K. and Soga, K., 2005, Fundamentals of Soil Behavior, Wiley, New York.
  • [44] Morvan X., Bruand A., Cousin I., Roque J., Baran N., Mouvet Ch., 2004, Prédiction des propriétés de rétention en eau des sols d’un bassin versant à l’aide de fonctions de pédotransfert : influence de la densité apparente et de la teneur en éléments grossiers. Etude et Gestion des Sols, 11, 117–135.
  • [45] Nemes, A. 2002, Unsaturated soil hydraulic database of Hungary: HUNSODA. Agrokémia és Talajtan, 51, 17–26.
  • [46] Nemes, A. 2003. Multi-scale hydraulic pedotransfer functions for Hungarian soils. Ph.D. diss. Wageningen Agric. Univ., Wageningen, the Netherlands.
  • [47] Della N., & Feia S., (2017). Experimental investigation on the effect of the mode of deposition on the pore-access size distribution of sand, Geomechanics and Geoengineering Journal.
  • [48] Oberg, A. L. (1995). “Negative pore pressures-seasonal variation and importance in slope stability analysis.” Proc., 1st Int. Conf. On Unsaturated Soils, Paris, 2 907–913.
  • [49] Pachepsky Y.A, Rawls W.J., 2003, Soil structure pedotransfer functions. European Journal of Soil Science, 54 (3): 443–45.
  • [50] P. DELAGE (2008), ‘Aspects du comportement des sols non saturés’. Revue Francaise De Geotechnique.
  • [51] Rawls, W.J., Brakensiek, D.L. 1985, Prediction of soil water properties for hydrologic modelling. In E. Jones and T.J. Ward (ed.) Watershed manage. Eighties. Proc. Symp. ASCE, Denver, CO. 30 Apr-2 May 1985. ASCE, New York. 293–299.
  • [52] Rawls, W.J., Brakensiek, D.L., Saxton, K.E. 1982, Estimation of soil water properties. Trans. ASAE, 26, 1747–1752.
  • [53] Rojas, E. (2008). “Equivalent stress equation for unsaturated soils. II: Solid-porous model.” Int. J. Geomech., 8(5), 291–299
  • [54] Saxton K.E., Rawls W.J., Romberger J.S., Papendick R.I., 1986, Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal; 50, 1031–1036.
  • [55] Tomasella J., Pachepsky Y.A., Crestana S., Rawls J., 2003, Comparison of Two Techniques to Develop Pedotransfer Functions for Water Retention. Soil Sci. Am. J. 67, 1085–1092.
  • [56] Tinjum, J., Benson, C., and Blotz, L. (1997), Soil-Water Characteristic Curves for Compacted Clays, J. Geotechnical Geoenvironmental Engineering, ASCE, 123(11), 1060–1069.
  • [57] Yang, H., Rahardjo, H., Leong, E., and Fredlund, D. (1994), Factors Affecting Drying and Wetting Soil-Water Characteristic Curves of Sandy Soils, Canadian Geotechnical J., 41, 908–920.
  • [58] Terzaghi K, Peck R, Mesri G. Soil mechanics in engineering practice. John Wiley & Sons; 1996.
  • [59] Toll, D.G. 2012. The behaviour of unsaturated soils. Chapter 5 in A Handbook of Tropical Residual Soil Engineering, (eds. Huat, B.B.K., Toll, D.G. & Prasad, A.) London: Taylor and Francis, ISBN: 9780415457316.
  • [60] Wösten, J.H.M., Pachepsky, Y.A., Rawls, W.J. 2001, Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of hydrology, 251, 123–150.
  • [61] Van Genuchten, M.T., Leij F.J., 1992, On estimating the hydraulic properties of unsaturated soils. 1–14. In M.Th. van Genuchten et al. (ed) Indirect methods for estimating the hydraulic properties of unsaturated soils. Univ. of California. Riverside.
  • [62] Van Genuchten M.T., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 892–898.
  • [63] Vereecken, H., Maes, J., Feyen, J., Darius, P. 1989, Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Science 148, 389–403.
  • [64] Zhan, T. L. T., and Ng, C. W. W. (2004). “Analytical analysis of rainfall infiltration mechanism in unsaturated soils.” Int. J. Geomech., 4(4), 273–284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0054f23-b868-47de-bace-ff134d6c9813
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.