PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An experimental study on parabolic trough collector in simulated conditions by metal-halide solar radiation simulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The utilization of solar radiation to obtain high-temperature heat can be realized by multiplying it on the illuminated surface with solar concentrating technologies. High-temperature heat with significant energy potential can be used for many technological purposes, e.g. the production of heat, cold or electricity. The following paper presents the results of the experimental study, on the operation of the parabolic linear absorber in the parabolic concentrator solar system. The parabolic mirror with an aperture of 1 m and a focal length of 0.25 m focuses the simulated radiation onto a tubular absorber with a diameter of 33.7 mm, which is placed in a vacuum tube. The length of the absorber is 1 m. The installation is illuminated by the solar simulator, which allows to carry out tests under constant and repeatable conditions. The simulator consists of 18 metal halide lamps, with a nominal power of 575 W each with a dimming possibility of up to 60%. The paper presents preliminary results of heat absorption by the analysed absorber, temperature increment, collected heat flux, and the pressure drop crucial for the optimization of the absorber geometry.
Rocznik
Strony
47--61
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100, Gliwice, Poland
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100, Gliwice, Poland
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100, Gliwice, Poland
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100, Gliwice, Poland
Bibliografia
  • [1] Abd-Elhady M.S., Melad E.B., Abd-Elhaim M., Seif A.A.: The cooling rate of the heated vapor compression cycle in case of using refrigerants R134a, R22, and R600a, Arch. Thermodyn. 42(2021), 2, 11–30.
  • [2] Stanek B., Węcel D., Bartela Ł., Rulik S.: Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study. Renew. Energy 196(2022), 598–609.
  • [3] Grzywnowicz K., Stanek B., Bartela Ł.: Increasing the efficiency of the parabolic trough collector under variable solar irradiance by internal flow turbulization – a numerical study. In: Proc. 34th Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS21), Taormina, 2021.
  • [4] Stanek B., Grzywnowicz K., Bartela Ł. Węcel D., Uchman W.: A system analysis of hybrid solar PTC-CPV absorber operation. Renew. Energy 174(2021), 635–653.
  • [5] Sabahi H., Tofigh A.A., Kakhki I.M., Bungypoor-Fard H.: Design, construction and performance test of an efficient large-scale solar simulator for investigation of solar thermal collectors. Sustain. Energy Technol. Assess. 15(2016), 35–41.
  • [6] Meng Q., Wang Y., Zhang L.: Irradiance characteristics and optimization design of a large-scale solar simulator. Sol. Energy 85(2011), 9, 1758–1767.
  • [7] Hamadani B.H., Chua K., Roller J., Bennahmias M.J., Campbell B., Yoon H.W., Dougherty B.: Towards realization of a large-area light-emitting diode-based solar simulator. Prog. Photovolt: Res. Appl. 21(2013), 4, 779–789.
  • [8] Al-Ahmad A.Y., Holdsworth J., Vaughan B., Sharafutdinova G., Zhou X., Belcher W., Dastoor P.: Modular LED arrays for large area solar simulation. Prog. Photovolt. Res. Appl. 27(2019), 2, 179– 189.
  • [9] Li L., Wang B., Pottas J., Lipiński W.: Design of a compound parabolic concentrator for a multi-source high-flux solar simulator. Sol. Energy 183(2019), 805–811.
  • [10] Ekman B.M., Brooks G., Rhamdhani M.A.: Development of high flux solar simulators for solar thermal research. Sol. Energy Mater. Sol. Cells 141(2015), 436–446.
  • [11] Wang W., Aichmayer L., Garrido J., Laumert B.: Development of a Fresnel lens based high-flux solar simulator. Sol. Energy 144(2017), 436–444.
  • [12] Bartela Ł., Stanek B., Węcel D., Skorek-Osikowska A.: A solar simulator numerical modeling for heat absorption phenomenon research in a parabolic trough collector. Int. J. Energy Res. 46(2021), 10074–10087.
  • [13] Stanek B., Bartela Ł., Węcel D., Skorek-Osikowska A.: Research on spatial non-uniformity of power distribution for solar radiation simulation. In: Proc. 12th Int. Exergy, Energy and Environment Symp. (IEEES-12), 2020, Book of abstracts.
  • [14] https://www.ni.com/docs/en-US/bundle/labview-docs/page/labview.html (accessed 1 Dec. 2021).
  • [15] https://www.therminol.com/product/71093459 (accessed 10 March 2022).
  • [16] https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf (accessed 02 May 2022).
  • [17] Stanek B., Bartela Ł.: Numerical and experimental study on 10 kWe metalhalide solar simulator for parabolic-trough collector testing. In: Proc. 34th Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS21), Taormina, 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f00201a8-0637-468a-a5c2-2a55c16597e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.