PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Taylor’s series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of Pi

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, by virtue of expansions of two finite products of finitely many square sums, with the aid of series expansions of composite functions of (hyperbolic) sine and cosine functions with inverse sine and cosine functions, and in the light of properties of partial Bell polynomials, the author establishes Taylor’s series expansions of real powers of two functions containing squares of inverse (hyperbolic) cosine functions in terms of the Stirling numbers of the first kind, presents a closed-form formula of specific partial Bell polynomials at a sequence of derivatives of a function containing the square of inverse cosine function, derives several combinatorial identities involving the Stirling numbers of the first kind, demonstrates several series representations of the circular constant Pi and its real powers, recovers Maclaurin’s series expansions of positive integer powers of inverse (hyperbolic) sine functions in terms of the Stirling numbers of the first kind, and also deduces other useful, meaningful, and significant conclusions and an application to the Riemann zeta function.
Wydawca
Rocznik
Strony
710--736
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
  • Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, China
  • Independent Researcher, Dallas, TX 75252-8024, USA
Bibliografia
  • [1] B.-N. Guo, D. Lim, and F. Qi, Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions, AIMS Math. 6 (2021), no. 7, 7494–7517, DOI: https://doi.org/10.3934/math.2021438.
  • [2] E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, USA, 1975.
  • [3] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996, DOI: http://dx.doi.org/10.1002/9781118032572.
  • [4] C.-F. Wei, Integral representations and inequalities of extended central binomial coefficients, Math. Methods Appl. Sci. 45 (2022), no. 9, 5412–5422, DOI: https://doi.org/10.1002/mma.8115.
  • [5] F. Qi, Diagonal recurrence relations for the Stirling numbers of the first kind, Contrib. Discrete Math. 11 (2016), no. 1, 22–30, DOI: https://doi.org/10.11575/cdm.v11i1.62389.
  • [6] F. Qi, Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind, Math. Inequal. Appl. 19 (2016), no. 1, 313–323, DOI: https://doi.org/10.7153/mia-19-23.
  • [7] F. Qi and B.-N. Guo, A diagonal recurrence relation for the Stirling numbers of the first kind, Appl. Anal. Discrete Math. 12 (2018), no. 1, 153–165, DOI: https://doi.org/10.2298/AADM170405004Q.
  • [8] C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathematics and its Applications. Chapman and Hall/CRC, Boca Raton, FL, 2002.
  • [9] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., 1974, DOI: https://doi.org/10.1007/978-94-010-2196-8.
  • [10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010, http://dlmf.nist.gov/.
  • [11] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972.
  • [12] F. Qi, D.-W. Niu, D. Lim, and Y.-H. Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, J. Math. Anal. Appl. 491 (2020), no. 2, Article 124382, 31 pages, DOI: https://doi.org/10.1016/j.jmaa.2020.124382.
  • [13] F. Qi, X.-T. Shi, and F.-F. Liu, Expansions of the exponential and the logarithm of power series and applications, Arab. J. Math. (Springer) 6 (2017), no. 2, 95–108, DOI: https://doi.org/10.1007/s40065-017-0166-4.
  • [14] J. Quaintance and H. W. Gould, Combinatorial Identities for Stirling Numbers, The unpublished notes of H. W. Gould. With a foreword by George E. Andrews, World Scientific Publishing Co. Pte. Ltd, Singapore, 2016.
  • [15] V. R. Thiruvenkatachar and T. S. Nanjundiah, Inequalities concerning Bessel functions and orthogonal polynomials, Proc. Ind. Acad. Sci. Sect. A 33 (1951), 373–384.
  • [16] Z.-H. Yang and S.-Z. Zheng, Monotonicity and convexity of the ratios of the first kind modified Bessel functions and applications, Math. Inequal. Appl. 21 (2018), no. 1, 107–125, DOI: https://doi.org/10.7153/mia-2018-21-09.
  • [17] C. M. Bender, D. C. Brody, and B. K. Meister, On powers of Bessel functions, J. Math. Phys. 44 (2003), no. 1, 309–314, DOI: https://doi.org/10.1063/1.1526940.
  • [18] Á. Baricz, Powers of modified Bessel functions of the first kind, Appl. Math. Lett. 23 (2010), no. 6, 722–724, DOI: https://doi.org/10.1016/j.aml.2010.02.015.
  • [19] Y. Hong, B.-N. Guo, and F. Qi, Determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind, CMES Comput. Model. Eng. Sci. 129 (2021), no. 1, 409–423, DOI: https://doi.org/10.32604/cmes.2021.016431.
  • [20] F. T. Howard, Integers related to the Bessel function J z1( ), Fibonacci. Quart. 23 (1985), no. 3, 249–257.
  • [21] V. H. Moll and C. Vignat, On polynomials connected to powers of Bessel functions, Int. J. Number Theory 10 (2014), no. 5, 1245–1257, DOI: https://doi.org/10.1142/S1793042114500249.
  • [22] M. Bakker and N. M. Temme, Sum rule for products of Bessel functions: comments on a paper by Newberger, J. Math. Phys. 25 (1984), no. 5, 1266–1267, DOI: https://doi.org/10.1063/1.526282.
  • [23] B. S. Newberger, Erratum: New sum rule for products of Bessel functions with application to plasma physics, J. Math. Phys. 24 (1983), no. 8, 2250–2250, DOI: https://doi.org/10.1063/1.525940.
  • [24] B. S. Newberger, New sum rule for products of Bessel functions with application to plasma physics, J. Math. Phys. 23 (1982), no. 7, 1278–1281, DOI: https://doi.org/10.1063/1.525510.
  • [25] J. M. Borwein and M. Chamberland, Integer powers of arcsin, Int. J. Math. Math. Sci. 2007 (2007), Art. ID 19381, 10 pages, DOI: https://doi.org/10.1155/2007/19381.
  • [26] Yu. A. Brychkov, Power expansions of powers of trigonometric functions and series containing Bernoulli and Euler polynomials, Integral Transforms Spec. Funct. 20 (2009), no. 11–12, 797–804, DOI: https://doi.org/10.1080/10652460902867718.
  • [27] B.-N. Guo, D. Lim, and F. Qi, Maclaurin’s series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function, Appl. Anal. Discrete Math. 17 (2023), no. 1, in Press. DOI: https://doi.org/10.2298/AADM210401017G.
  • [28] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844–858, DOI: http://dx.doi.org/10.1016/j.amc.2015.06.123.
  • [29] F. Qi, C.-P. Chen, and D. Lim, Several identities containing central binomial coefficients and derived from series expansions of powers of the arcsine function, Results Nonlinear Anal. 4 (2021), no. 1, 57–64, DOI: https://doi.org/10.53006/rna.867047.
  • [30] A. I. Davydychev and M. Y Kalmykov, New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams, Nuclear Phys. B 605 (2001), no. 1–3, 266–318, DOI: https://doi.org/10.1016/S0550-3213(01)00095-5.
  • [31] M. Yu. Kalmykov and A. Sheplyakov, lsjk–a C++ library for arbitrary-precision numeric evaluation of the generalized logsine functions, Computer Phys. Commun. 172 (2005), no. 1, 45–59, DOI: https://doi.org/10.1016/j.cpc.2005.04.013.
  • [32] M. Kobayashi, Integral representations for local dilogarithm and trilogarithm functions, Open J. Math. Sci. 5 (2021), no. 1, 337–352, DOI: https://doi.org/10.30538/oms2021.0169.
  • [33] F. Oertel, Grothendieck’s inequality and completely correlation preserving functions–a summary of recent results and an indication of related research problems, arXiv: https://arxiv.org/abs/2010.00746v2.
  • [34] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Eighth edition, Revised from the seventh edition, Elsevier/Academic Press, Amsterdam, 2015, DOI: https://doi.org/10.1016/B978-0-12-384933-5.00013-8.
  • [35] M. I. Qureshi, J. Majid, and A. H. Bhat, Hypergeometric forms of some composite functions containing xarccosine( ) using Maclaurin’s expansion, South East Asian J. Math. Math. Sci. 16 (2020), no. 3, 83–95.
  • [36] F. Qi and B.-N. Guo, Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials, Mediterr. J. Math. 14 (2017), no. 3, Art. 140, 14 pages, DOI: https://doi.org/10.1007/s00009-017-0939-1.
  • [37] F. Qi, D.-W. Niu, D. Lim, and B.-N. Guo, Closed formulas and identities for the Bell polynomials and falling factorials, Contrib. Discrete Math. 15 (2020), no. 1, 163–174, DOI: https://doi.org/10.11575/cdm.v15i1.68111.
  • [38] F. Qi, X.-T. Shi, F.-F. Liu, and D. V. Kruchinin, Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput. 7 (2017), no. 3, 857–871, DOI: https://doi.org/10.11948/2017054.
  • [39] F. Qi, Explicit formulas for partial Bell polynomials, Maclaurin’s series expansions of real powers of inverse (hyperbolic) cosine and sine, and series representations of powers of Pi, Research Square (2021), DOI: https://doi.org/10.21203/rs.3.rs-959177/v3.
  • [40] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly 92 (1985), no. 7, 449–457, DOI: http://dx.doi.org/10.2307/2322496.
  • [41] Q.-M. Luo, B.-N. Guo, and F. Qi, On evaluation of Riemann zeta function ζ s( ), Adv. Stud. Contemp. Math. (Kyungshang) 7 (2003), no. 2, 135–144.
  • [42] S. Jin, B.-N. Guo, and F. Qi, Partial Bell polynomials, falling and rising factorials, Stirling numbers, and combinatorial identities, CMES Comput. Model. Eng. Sci. 132 (2022), no. 3, 781–799, DOI: https://dx.doi.org/10.32604/cmes.2022.019941.
  • [43] F. Qi and M. D. Ward, Closed-form Formulas and Properties of Coefficients in Maclaurin’s Series Expansion of Wilf’s Function Composited by Inverse Tangent, Square Root, and Exponential Functions, 2022, arXiv: https://arxiv.org/abs/2110.08576v2.
  • [44] D. S. Bernstein, Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas, Revised and expanded edition, Princeton University Press, Princeton, NJ, 2018.
  • [45] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math. 351 (2019), 1–5, DOI: https://doi.org/10.1016/j.cam.2018.10.049.
  • [46] Y. Shuang, B.-N. Guo, and F. Qi, Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 135, 12 pages, DOI: https://doi.org/10.1007/s13398-021-01071-x.
  • [47] Z.-H. Yang and J.-F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math. 364 (2020), 112359, 14 pages, DOI: https://doi.org/10.1016/j.cam.2019.112359.
  • [48] L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 83, 13 pages, DOI: https://doi.org/10.1007/s13398-020-00814-6.
  • [49] C.-P. Chen and F. Qi, The best bounds in Wallis’ inequality, Proc. Amer. Math. Soc. 133 (2005), no. 2, 397–401, DOI: http://dx.doi.org/10.1090/S0002-9939-04-07499-4.
  • [50] S. Guo, J.-G. Xu, and F. Qi, Some exact constants for the approximation of the quantity in the Wallis’ formula, J. Inequal. Appl. 2013 (2013), Paper No. 67, 7 pages, DOI: https://doi.org/10.1186/1029-242X-2013-67.
  • [51] F. Qi and C. Mortici, Some best approximation formulas and inequalities for the Wallis ratio, Appl. Math. Comput. 253 (2015), 363–368, DOI: https://doi.org/10.1016/j.amc.2014.12.039.
  • [52] F. Qi, Taylor’s series expansions for real powers of functions containing squares of inverse (hyperbolic) cosine functions, explicit formulas for special partial Bell polynomials, and series representations for powers of circular constant, arXiv: https://arxiv.org/abs/2110.02749v2.
  • [53] F. Qi and P. Taylor, Several series expansions for real powers and several formulas for partial Bell polynomials of sinc and sinhc functions in terms of central factorial and Stirling numbers of second kind, arXiv: https://arxiv.org/abs/2204.05612v4.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-effefa7e-eec5-4016-9ebb-3aff21d62603
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.