PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oddech codzienny

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Daily breath
Języki publikacji
PL
Abstrakty
EN
The odor of human body has facilitated diagnosis for a long time. Sniffing the body, breath, urine and even feces became one of the useful methods in ancient medicine. For centuries, the sweet smell of the breath was associated with diabetes, the fishy smell was associated with liver disease, measles was associated with the smell of feathers, typhoid with the smell of fresh bread, and tuberculosis with stale beer. Hippocrates also linked the smell of the human body and disease, claiming that the smell of a sick person is different from that of a healthy one. He classified the characteristic odors of the body into sweet, musty, fishy and rotten. The father of chemical analysis of breath was Antonie Lavoisier, who found that carbon dioxide is exhaled by guinea pigs. The pioneer of modem breath analysis was Linus Pauling, who in 1971 presented the results of breath studies using gas chromatography (GC), showing the presence of over 200 substances. Exhaled air containing approximately 78% N2, 17% OSub>2, 3% CO2 and up to 6% water vapor. The exact concentrations of individual inorganic gases depend on many factors, mainly physical exercise, cardiac output, and lung ventilation. A mixture of many volatile organic compounds is a much smaller group of substances at concentrations 100 ppm. The substances in the breath can come from human metabolism and enter into the body by inhaled air and food. Volatile organic compounds present in the breath that can be divided into different chemical classes e.g. saturated hydrocarbons (ethane, pentane, aldehydes), unsaturated hydrocarbons (isoprene), ketones (acetone), sulfur-containing compounds (methyl mercaptan, dimethyl sulfide, dimethyl disulphide, carbon disulphide, carbonyl sulphide) and containing nitrogen (amines). Endogenous substances in the breath can be used to track physiological and pathological processes in the body. Chemical analysis of the breath can provide information regarding biochemical processes in the organism and human health. Compared to many medical diagnostic methods, it is painless, non-invasive and safe. Nowadays, the main purpose of breath analysis is to identify volatile organic compounds that can be used as markers of various diseases. Research focused on detection of lung cancer based on specific volatile organic compounds in the exhaled air is carried out in many laboratories. Rapid and non-invasive methods for early detection of lung cancer and chronic obstructive pulmonary disease is crucial for early diagnosis. This mini review presents background of breath, briefly describes main volatiles, their biochemical origin as well as potential application of exhaled gases analysis.
Rocznik
Strony
911--922
Opis fizyczny
Bibliogr. 24 poz., schem.
Twórcy
autor
  • Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Gagarina 7, 87-100 Toruń
  • Interdyscyplinarne Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Wileńska 4, 87-100 Toruń
  • Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Gagarina 7, 87-100 Toruń
  • Interdyscyplinarne Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Wileńska 4, 87-100 Toruń
  • Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Gagarina 7, 87-100 Toruń
  • Interdyscyplinarne Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Wileńska 4, 87-100 Toruń
  • Interdyscyplinarne Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Wileńska 4, 87-100 Toruń
  • Interdyscyplinarne Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Wileńska 4, 87-100 Toruń
  • Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Gagarina 7, 87-100 Toruń
  • Interdyscyplinarne Centrum Nowoczesnych Technologii, Uniwersytet Mikołaja Kopernika w Toruniu, ul. Wileńska 4, 87-100 Toruń
Bibliografia
  • [1] T. Ligor, M. Ligor, A. Amann, C. Ager, M. Bachler, A. Dzień, B. Buszewski, J. Breath Res., 2008,2,046006.
  • [2] T. Ligor, Analityka wydychanego powietrza z zastosowaniem sprzężonych technik chromatograficznych z przeznaczeniem do badan przesiewowych płuc, Wydawnictwo Naukowe UMK, Toruń, 2011.
  • [3] W. Miekisch, J.K. Schubert, G.F.E. Noeldge-Schomburg, Clin. Chim. Acta, 2004,347,25.
  • [4] M. Hakim, Y. Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Chem. Rev., 2012,112, 5949.
  • [5] J. King, H. Koc, K. Unterkofler, P. Mochalski, A. Kupferthaler, G. Teschl, S. Teschl, H. Hinterhuber, A. Amann, J. Theoret. Biol., 2010, 267, 626.
  • [6] B. Buszewski, M. Kęsy, T. Ligor, A. Amann, Biomed. Chromatogr. 2007, 21, 553.
  • [7] C. Prado, P. Martin, J.F. Periago, J. Chromatogr. A, 2003,1011,125.
  • [8] P. Spanel, P. Rolfe, В. Rajan, D. Smith, Ann. Occup. Hyg. 1996, 40, 615.
  • [9] C. Warneke, J. Kuczyński, A. Hansel, A. Jordan, W. Vogel, W. Lindinger, Int. J. Mass Spectrom. Ion Processes, 1996,154, 61.
  • [10] A. D’Amico, G. Pennazza, M. Santonico, E. Martinelli, C. Roscioni, G. Galluccio, R. Paolesse, C. Di Natale, Lung Cancer, 2010,68,170.
  • [11] S.M. Chao, Y.J. Kim, G.S. Heo, S.M. Shin, Sensor Actuator В, 2006,117, 50.
  • [12] F. Monedeiro, M. Monedeiro-Milanowski, I.A. Ratiu, B. Brozek, T. Ligor, B. Buszewski, Molecules, 2021,26,1789.
  • [13] M. Phillips, К Gleeson, J. M. B. Hughes, J. Greenberg, R. N. Cataneo, L. Baker, W. P. McVay, Lancet., 1999,353,1930.
  • [14] D. Poli, P. Carbognani, M. Corradi, M. Goldoni, O. Acampa, В. Balbi, L. Bianchi, M. Rusca, A. Mutti, Respiratory Research, 2005, 6, 71.
  • [15] M. Ligor, T. Ligor, A. Bajtarevic, C. Ager, M. Pienz, M. Klieber, H. Denz, M. Fiegl, W. Hilbe, W. Weiss, P. Lukas, H. Jamnig, M. Hackl, B. Buszewski, W. Miekisch, J. Schubert, A. Amann, Clin. Chem. Lab. Med., 2009,47, 550.
  • [16] J. Rudnicka, T. Kowalkowski, T. Ligor, B. Buszewski, J. Chromatogr. B, 2011, 879, 3360.
  • [17] N. Fens, A.H. Zwinderman, M.P. van der Schee, S.B. de Nijs, E. Dijkers, A.C. Roldaan, D. Cheung, E.H. Bel, P.J. Sterk, Am. J. Respir. Crit. Care. Med., 2009, 180, 1076.
  • [18] C.O. Phillips, Y. Syed, N. Mac Parthalain, R. Zwiggelaar, T.C. Claypole, K.E. Lewis, J. Breath Res., 2012, 6, 036003.
  • [19] M. Cazzola, A. Segreti, R. Capuano, A. Bergamini, E. Martinelli, L. Calzetta, P. Rogliani, С. Ciaprini, J. Ora, R. Paolesse, C. Di Natale, A. D’Amico, COPD Research and Practice, 2015,1, 7.
  • [20] В. Ibrahim, M. Basanta, P. Cadden, D. Singh, D. Douce, A. Woodcock, S. J. Fowler, Thorax, 2011,66, 804.
  • [21] A. Smolińska, E.M.M. Klaassen, J.W. Dallinga, K.D.G. van de Kant, Q. Jobsis, E.J.C. Moonen, O.C.P. van Schayck, E. Dompeling, F.J. van Schooten, Plos One, 2014, 9, 95668.
  • [22] M. Phillips, R.N. Cataneo, B.A. Ditkoff, P. Fisher, J. Greenberg, R. Gunawardena, C.S. Kwon, O. Tietje, C. Wong, Breast Cancer Research and Treatment, 2006, 99,19.
  • [23] I. A. Ratiu, T. Ligor, V. Bocos-Bintintan, C.A. Mayhew, B. Buszewski, J. Clin. Med., 2021,10, 32.
  • [24] M. Janicka, P. Kubica, A. Kot-Wasik, J. Kot, J. Namiesnik, J. Chromatogr. B, 2012,893, 144.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-effbed8e-cbca-4e49-b2d4-94c68b7c4a56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.