PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Tajno ultramafic-alkaline-carbonatite massif, NE Poland : a review. Geophysics, petrology, geochronology and isotopic signature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reviews all available geological data on the Tajno Massif that intruded the Paleoproterozoic crystalline basement of NE Poland (Mazowsze Domain) north of the Teisseyre-Tornquist Zone, on the East European Craton. This massif (and the nearby Ełk and Pisz intrusions) occurs beneath a thick Mesozoic-Cenozoic sedimentary cover. It has first been recognized by geophysical (magnetic and gravity) investigations, then by drilling (12 boreholes down to 1800 m). The main rock types identified (clinopyroxenites, syenites, carbonatites cut by later multiphase volcanic/subvolcanic dykes) allow characterizing this massif as a differentiated ultramafic, alkaline and carbonatite complex, quite comparable to the numerous massifs of the Late Devonian Kola Province of NW Russia. Recent geochronological data (U-Pb on zircon from an albitite and Re-Os on pyrrhotite from a carbonatite) indicate that the massif was emplaced at ~348 Ma (Early Carboniferous). All the rocks, but more specifically the carbonatites, are enriched in Sr, Ba and LREE, like many carbonatites worldwide, but depleted in high field strength elements (Ti, Nb, Ta, Zr). The initial87Sr/86Sr (0.70370 to 0.70380) and ɛNd(t) (+3.3 to +0.7) isotopic compositions of carbonatites plot in the depleted quadrant of the Nd-Sr diagram, close to the “FOcal ZOne” deep mantle domain. The Pb isotopic data (206Pb/204Pb <18.50) do not point to an HIMU (high U/Pb) source. The ranges of C and O stable isotopic compositions of the carbonatites are quite large; some data plot in (or close to) the “Primary Igneous Carbonatite” box, while others extend to much higher, typically crustal ẟ18O and ẟ13C values.
Rocznik
Strony
402--421
Opis fizyczny
Bibliogr. 68 poz., fot., rys., tab., wykr.
Twórcy
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • Université Libre de Bruxelles (ULB), Département Géosciences, Environnement et Société (CP 160/02), Av. F. Roosevelt, 50 B-1050 Bruxelles, Belgium
Bibliografia
  • 1. Ashwal, L., Demaiffe, D., Torsvik, T., 2002. Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: the case for an Andean-type arc origin. Journal of Petrology, 43: 45-83.
  • 2. Artemieva, I., 2003. Lithospheric structure, composition, and thermal regime of the East European craton: implications for the subsidence of the Russian Platform. Earth and Planetary Science Letters, 213: 429-444.
  • 3. Bell, K., ed., 1989. Carbonatites. Genesis and Evolution. Unwin Hyman, London.
  • 4. Bell, K., Rukhlov, A.S., 2004. Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. In: Phoscorites and Carbonatites: from mantle to mine: the key example of the Kola Alkaline Province (eds. F. Wall and A. Zaitsev): 421-455. Mineralogical Society of London.
  • 5. Bell, K., Tilton, G.R., 2002. Probing the mantle: the story from carbonatites. EOS, Transaction American Geophysical Union, 83: 273-277.
  • 6. Bell, K., Simonetti, A., 2010. Source of parental melts to carbonatites - critical isotopic constraints. Mineralogy and Petrology, 98: 77-89.
  • 7. Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge.
  • 8. Bogdanova, S., Gorbatschev, R., Grad, M., Janik, T., Guterch, A., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V., Taran, L., 2006. Archean terrains Palaeoproterozoic reworking and accretion in the Ukrainian Shield, East European Craton. Geological Society Memoirs, 32: 645-654.
  • 9. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research, 259: 5-33.
  • 10. Boynton, W.V., 1984. Geochemistry of Rare Earth Elements: meteorite Studies. In: Rare Earth Element Geochemistry (ed. P. Henderson): 63-114. Elsevier, New York.
  • 11. Brassinnes, S., Demaiffe, D., Balaganskaya, E., Downes, H., 2003. New mineralogical and geochemical data on the Vuorijarvi ultramafic, alkaline and carbonatitic complex (Kola Region, NW Russia). Periodico di Mineralogia, 72: 79-86.
  • 12. Brassinnes, S., Wiszniewska, J., Demaiffe, D., 2005. A LA-ICP-MS study of carbonates from late-stage carbonatite veins in the Tajno massif (Poland). Mineralogical Society of Poland -Special Papers, 26: 25-28.
  • 13. Bühn, B., Rankin, A.H., Schneider, J., Dulski, P., 2002. The nature of orthomagmatic, carbonatitic fluids precipitating REE, Sr-rich fluorite: fluid-inclusion evidence from the Okorusu fluorite deposit, Namibia. Chemical Geology, 186: 75-98.
  • 14. Carignan, J., Hild, P., Mévelle, G., Morel, J., Yeghicheyan, D., 2001. Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletters, 25: 187-198.
  • 15. Chakhmouradian, A.R., 2006. High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry, and significance for constraining the sources of carbonatites. Chemical Geology, 235: 138-160.
  • 16. Cieśla, E., Kosobudzka, I., 1992. Geophysical studies of the Tajno massif. Prace Państwowego Instytutu Geologicznego, 139: 15-18.
  • 17. Clark, D.A., 1997. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO Journal of Australian Geology and Geophysics, 17: 83-103.
  • 18. Cox, R.A., Wilton, D.H.C., 2006. U-Pb dating of perovskite by LA-ICP-MS: an example from the Oka carbonatite, Quebec, Canada. Chemical Geology, 235: 21-31.
  • 19. Demaiffe, D., Wiszniewska, J., Brassinnes, S., 2005. A petrological-geochemical overview of the Tajno carbonatite complex (NE Poland): comparison with the Kola Carbonatite Province (Russia). Mineralogical Society of Poland, Special Papers, 26: 29-35.
  • 20. Demaiffe, D., Wiszniewska, J., Krzemińska, E., Williams, I.S., Stein, H., Brassinnes, S., Ohnenstetter, D., Deloule, E., 2013. A hidden alkaline and carbonatite province of early Carboniferous age in northeast Poland: zircon U-Pb and pyrrhotite Re-Os geochronology. The Journal of Geology, 121: 91-104.
  • 21. Depciuch, T., Lis, J., Sylwestrzak, H., 1975. K-Ar age of the rocks of the crystalline basement of north-east Poland (in Polish with English summary). Kwartalnik Geologiczny, 19 (4): 759-779.
  • 22. Downes, H., Balaganskaya, E., Beard, A., Liferovich, R., Demaiffe, D., 2005. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: a review. Lithos, 85: 48-75.
  • 23. Dziedzic, E., 1973. Geochemical studies of intrusive formations. Alkaline-ultrabasic Tajno intrusion. Prace Instytutu Geologicznego, 68: 111-113.
  • 24. Gaczyński, B., 1978. Utwory karbonatytowe w skałach krystalicznych Tajna (in Polish). Ph.D. thesis, Instytut Geologiczny, Warszawa.
  • 25. Jago, B.C., Gittins, J., 1991. The role of fluorine in carbonatite magma evolution. Nature, 349: 56-58.
  • 26. Juskowiak, O., 1973. Intrusive formations of basic and alkaline rocks. Tajno alkaline-ultramafic intrusion (in Polish with English summary). Prace Instytutu Geologicznego, 68: 104-108.
  • 27. Katz, K., Keller, J., 1981. Comb-layering in carbonatite dykes. Nature, 294: 350-352.
  • 28. Keller, J., Hoefs, J., 1995. Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Carbonatite Volcanism (eds. K. Bell and J. Keller): 113-123. Springer, Berlin.
  • 29. Kogarko, L., Kononova, V.A., Orlova, M.P., Woolley, A.R., 1995. Alkaline Rocks and Carbonatites of the World. Part 2. Former USSR. Chapman and Hall, London.
  • 30. Kozłowski, A., Wiszniewska, J., Sikorska, M., 2005. Fluid inclusions and cathodoluminescence of fluorite from carbonatites of the Tajno Massif, NE Poland. Mineralogical Society of Poland - Special Papers, 26: 1-7.
  • 31. Kramm, U., Kogarko, L., Kononova, V.A., Vartiainen, H., 1993. The Kola alkaline province of CIS and Finland. Precise Rb-Sr ages define 380-360 Ma age range for all magmatism. Lithos, 30: 33-44.
  • 32. Królikowski, C., Petecki, Z., 1995. Gravimetric Atlas of Poland. Polish Geological Institute, Warsaw.
  • 33. Królikowski, C., Petecki, Z., Żółtowski, Z., 1998. Main structural units in the Polish part of the East-European Platform in the light of gravimetric data (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 386: 5-58.
  • 34. Krystkiewicz, E., Krzemiński, L., 1992. Petrology of the alkaline-ultrabasic Tajno massif. Prace Państwowego Instytutu Geologicznego, 139: 19-35.
  • 35. Krzemińska, E., 2010. Geochemical and isotopic reconstruction of the tectonic setting of the Mazowsze Domain in the Precambrian basement of North-Eastern Poland (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 195: 1-56.
  • 36. Krzemińska, E., Williams, I.S., Wiszniewska, J., 2005. A Late Paleoproterozoic subduction-related mafic igneous suite from Łomża, NE Poland. Terra Nova, 17: 442-450.
  • 37. Krzemińska, E., Krzemiński, L., Petecki, Z., Wiszniewska, J., Salwa, S., Żaba, J., Gaidzik, K., Williams, I.S., Rosowiecka, O., Taran, L., Johansson, C., Pécskay, Z., Demaiffe, D., Grabowski, J., Zieliński, G., 2017. Mapa geologiczna podłoża krystalicznego polskiej części platformy wschodnioeuropejskiej 1:1000 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 38. Krzemiński, L., Krzemińska, E., Anczkiewicz, R., Pècskay, Z., 2010. Sr and Nd systematics of the Tajno alkaline-ultramafic complex, NE Poland: identification of depleted and enriched components in the subcontinental lithospheric mantle. In: Geochemistry of magmatic rocks: 89-91. XXVII International conference School "Geochemistry of Alkaline Rocks”, Moscow-Koktebel, Sept. 9-16.
  • 39. Krzemiński, L., Krzemińska, E., Wiszniewska, J., 2019. Detrital zircon geochronology and provenance of the Proterozoic quartz-rich metasediments of the Mazowsze Domain: source area and regional correlation. Biuletyn Państwowego Instytutu Geologicznego, 474: 59-72.
  • 40. Kubicki, S., 1992. An outline of geological structure of the Tajno massif. Prace Państwowego Instytutu Geologicznego, 139: 7-13.
  • 41. Le Maitre, R.W. ed., 2002. Igneous Rocks. A Classification and Glossary of terms. IUGS, Cambridge University Press.
  • 42. Ludwig, K.R., 2003. Using Isoplot/Ex, version 2, a geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 1a.
  • 43. Mariano, A.N., 1989. Nature of economic mineralization in carbonatites and related rocks. In: Carbonatites: Genesis and Evolution (ed. K. Bell): 149-172. Unwin Hyman, London.
  • 44. McDonough, W.F., Sun, S., 1995. The composition of the Earth. Chemical Geology, 67: 1050-1056.
  • 45. Mitchell, R.H., 2005. Carbonatites and carbonatites. The Canadian Mineralogist, 43: 2049-2068.
  • 46. Narkiewicz, M., Petecki, Z., 2019. Teisseyre-Tornquist zone - evolving approaches and new data (in Polish with English summary). Przegląd Geologiczny, 67: 837-848.
  • 47. Nielsen, T., Veksler, I., 2002. Is natrocarbonatite a cognate fluid condensate? Contributions to Mineralogy and Petrology, 142: 425-435.
  • 48. Notholt, A.J.G., Highley, D.E., Deans, T., 1990. Economic minerals in carbonatites and associated alkaline igneous rocks. Transactions of the Institution of Mining and Metallurgy, B99: 59-80.
  • 49. Pandit, M., Sial, A., Sukumaran, G., Pimente, l.M., Ramasamy, A., Ferreira, V., 2002. Depleted and enriched mantle sources for Paleo-and Neoproterozoic carbonatites of southern India: Sr, Nd, C-O isotopic and geochemical constraints. Chemical Geology, 189: 69-89.
  • 50. Petecki, Z., Rosowiecka, O., 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. Geological Quarterly, 61 (4): 934-945.
  • 51. Pilet, S., Hernandez, J., Bussy, F., Sylvester, P.J., 2004. Short-term metasomatic control of Nb/Th ratios in the mantle sources of intraplate basalts. Geology, 32: 113-116.
  • 52. Ryka, W., 1992. Geology of the Tajno massif carbonatites. Prace Państwowego Instytutu Geologicznego, 139: 43-78.
  • 53. Ryka, W., Armbrustmacher, T.J., Modreski, P.J., 1992. Geochemistry and petrology of the alkaline intrusive rocks of the Tajno massif (preliminary report). Prace Państwowego Instytutu Geologicznego, 139: 37-43.
  • 54. Skridlaite, G., Wiszniewska J., Duchesne, J-C., 2003. Ferropotassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton. Precambrian Research, 124: 305-326.
  • 55. Taylor, H.P. Jr., Frechen, J., Degens, E.T., 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alnö district, Sweden. Geochimica et Cosmochimica Acta, 31: 407-430.
  • 56. Tichomirova, M., Whitehouse, M.J., Götze, J., Schulz, B., Belyatsky, B.V., 2012. Different zircon recrystallization types in carbonatites caused by magma mixing: evidence from U-Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chemical Geology, 35: 173-198.
  • 57. Verhulst, A., Balaganskaya, E., Kirnarsky, Yu., Demaiffe, D., 2000. Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos, 51: 1-25.
  • 58. Wall, F., Zaitsev, A.N., 2004. Phoscorites and Carbonatites: from Mantle to Mine. Mineralogical Society, London.
  • 59. Williams, I.S., Claesson, S., 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology, 97: 205-217.
  • 60. Williams, I.S., Krzemińska, E., Wiszniewska, J., 2009. An extension of the Svecofennian orogenic province into NE Poland: Evidence from geochemistry and detrital zircon from Paleoproterozoic paragneisses. Precambrian Research, 172: 234-254.
  • 61. Wiszniewska, J., 2002. Age and the genesis of Fe-Ti-V ores and related rocks in the Suwałki Anorthosite Massif (northeastern Poland) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 401: 1-114.
  • 62. Wiszniewska, J., Sikorska, M., 2005. Minerals-carriers of rare-earth elements in carbonatites of the Tajno massif (NE Poland) as evidenced by cathodoluminescence studies (in Polish with English summary). Przegląd Geologiczny, 53: 348-349.
  • 63. Wiszniewska, J., Claesson, S., Stein, H., Vander Auwera, J., Duchesne, J.C., 2002. The north-eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation. Terra Nova, 14: 451-460.
  • 64. Woolley, A.R., 1989. The spatial and temporal distribution of carbonatites. In: Carbonatites: Genesis and Evolution (ed. K. Bell): 15-37. Unwin Hyman, London.
  • 65. Wolley, A.R., Kempe, D.R.C., 1989. Carbonatites: nomenclature, average chemical compositions and element distribution. In: Carbonatites: Genesis and Evolution (ed. K. Bell): 1-14. Unwin Hyman, London.
  • 66. Zaitsev, A., Bell, K., 1995. Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola Peninsula, Russia. Contributions to Mineralogy and Petrology, 121: 324-335.
  • 67. Zaitsev, A.N., Wall, F., LE Bas, M.J., 1998. REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Mineralogical Magazine, 62: 225-250.
  • 68. Zaitsev, A.N., Williams, C., Jeffries, T.E., Strekopytov, S., Moutte, J., Ivashchenkova, O.V., Spratt, J., Petrov, S.V., Wall, F., Seltmann, R., Borozdin, A.P., 2014. Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 61: 204-225.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-effb9f84-514d-4045-9f80-d05410d5c104
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.