PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of hydrogen gas buble in hydrophobic properties in mixed micro layer (Al2O3+Mg)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To find out more about the role of hydrogen gas bubbles in improving the hydrophobic nature of a layer, especially in the layers of microparticles Alumina (Al2O3) with Magnesium (Mg). Design/methodology/approach: The method used is an experimental method by first conducting the SEM-Edx test, testing the content of the elements in the waxy layer and observing the topographic shape on the surface of the taro leaves. Then prepare a mixture of Alumina micro particles with Magnesium to investigate the hydrophobicity of the taro leaves. The mixed presentations between Alumina and Magnesium are: (0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%). Findings: The results of this study found three conditions of the Alumina and Magnesium mix layer when in contact with a droplet, namely: Hydrophobic conditions occur when the surface structure of the rough mixed micro layer forms micro crevices, then bubbles of hydrogen gas fill it to form trapped gases. When droplets come in contact with the surface of the mixed layer the effect of the gas being trapped is very effective at creating hydrophobic properties. While the transition conditions occur when more and more hydrogen gas bubbles along with the increasing percentage of Mg and the opposite occurs in micro particle fissures. Bubbles fill the micro-gap space fully so that the tops of the micro particles are covered by bubbles. This causes the droplet surface tension to weaken, so the droplet contact angle decreases. Furthermore, hydrophilic conditions occur when the micro gap is getting narrower as the percentage of Mg increases and the formation of hydrogen gas bubbles increases. The high level of bubble density in the micro gap closes the peaks of the micro particles, which results in the surface tension of the droplet getting weaker. In this weak surface tension condition, the hydrogen bubble can break through the droplet surface tension and change its hydrophobic nature to hydrophilic. Research limitations/implications: This research is limited to the hydrophobicity of Alumina and Magnesium materials, mainly to investigate the role of hydrogen gas in supporting the hydrophobic nature of taro leaves (Colocasia esculenta). Practical implications: The practical implication in this study is the use of hydrophobic membranes which are widely applied to filtration. Originality/value: Discovered the composition of a membrane mixture of Alumina (Al2O3) and Magnesium (Mg) to create hydrophilic and hydrophobic conditions.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Mechanical Engineering Department, Engineering Faculty, University Lambung Mangkurat, Jenderal Achmad Yani Street KM 35.5, Banjarbaru, South Kalimantan, 70714, Indonesia
  • Mechanical Engineering Department, Engineering Faculty, University Brawijaya, Veteran street No. 16, Malang, East Java, 65145, Indonesia
autor
  • Mechanical Engineering Department, Engineering Faculty, University Brawijaya, Veteran street No. 16, Malang, East Java, 65145, Indonesia
autor
  • Mechanical Engineering Department, Engineering Faculty, University Brawijaya, Veteran street No. 16, Malang, East Java, 65145, Indonesia
Bibliografia
  • [1] Z. Burton, B. Bhushan, Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces, Ultramicroscopy 106 (2006) 709-719.
  • [2] B. Bhushan, Y.C. Jung, Micro and Nanoscale Characterization of Hydrophobic and Hydrophilic Leaf Surface, Nanotechnology 17 (2006) 2758-2772. DOI: https://doi.org/10.1088/0957-4484/17/11/008
  • [3] J.N. Israelachvili, Intermolecular and Surface Forces, Second Edition, Academic Press, London, 1992.
  • [4] B. Bhushan, Principles and Applications of Tribology, Wiley, New York, 1999.
  • [5] B. Bhushan, Introduction to Tribology, Wiley, New York, 2002.
  • [6] B. Bhushan, Nanotribology and Nanomechanics - An Introduction, Second Edition, SpringerVerlag, Heidelberg, Germany, 2008.
  • [7] B. Bhushan, Y.C. Jung, K. Koch, Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self- Cleaning and Low Adhesion, Philosophical Transictions of the Royal Society A 367 (2009) 1631-1672. DOI: https://doi.org/10.1098/rsta.2009.0014
  • [8] K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott, Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter 5 (2009) 1386-1393. DOI: https://doi.org/10.1039/B818940D
  • [9] C. Neinhuis, W. Barthlott, Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces, Annals of Botany 79/6 (1997) 667-677.
  • [10] K. Koch, B. Bhushan, W. Barthlott, Diversity of Structure, Morphology, and Wetting of Plant Surfaces, Soft Matter 4 (2008) 1943-1963. DOI: https://doi.org/10.1039/B804854A
  • [11] K. Koch, B. Bhushan, W. Barthlott, Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics, Progress in Materials Science 54/2 (2009) 137-178. DOI: https://doi.org/10.1016/j.pmatsci.2008.07.003
  • [12] B. Bhushan, Y.C. Jung, Wetting, Adhesion and Friction of Superhydrophobic and Hydrophilic Leaves and Fabricated Micro/nanopatterned Surfaces, Journal of Physics: Condensed Matter 20/22 (2008) 225010. DOI: https://doi.org/10.1088/0953-8984/20/22/225010
  • [13] M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer- Verlag, Heidelberg, Germany, 2008.
  • [14] L. Ditscherlein, J. Fritzsche, U.A. Peuker, Study of nanobubbles on hydrophilic and hydrophobic alumina, Colloids and Surface A: Physicochemical and Engineering Aspects 497 (2016) 242-250. DOI: https://doi.org/10.1016Zj.colsurfa.2016.03.011
  • [15] Wahyudi, R. Subagyo, F. Gapsari, Physical and chemical mechanisms of hydrophobicity of nanoparticle membranes (Mg+ABOs), Journal of Achievements in Materials and Manufacturing Engineering 96/2 (2019) 57-68. DOI: https:doi.org/10.5604/01.3001.0013.7936
  • [16] M. Mertens, M. Mohr, K. Bruhne, H.J. Fecht, M. Łojkowski, W. Święszkowski, W. Łojkowski, Patterned hydrophobic and hydrophilic surface of ultra- smooth nanocrystalline diamond layers, Applied Surface Science 390 (2016) 526-530. DOI: https://doi.org/10.1016/j.apsusc.2016.08.130
  • [17] R. Subagyo, I.N.G. Wardana, A. Widodo, E. Siswanto, The mechanism of hydrogen bubble formation caused by the superhydrophobic characteristic of taro leaves, International Review of Mechanical Engineering (I.R.E.M.E.) 11/2 (2017) 95-100. DOI: https://doi.org/10.15866/ireme.v11i2.10621
  • [18] Jiadao Wang H. Chen, T. Sui, A. Li, D. Chen, Investigation on hydrophobicity of lotus leaf: Experiment and theory, Plant Science 176/5 (2009) 687-695. DOI: https://doi.org/10.1016Zj.plantsci.2009.02.013
  • [19] M. Nosonovsky, B. Bhushan, Roughness optimization for biomimetic superhydrophobic surfaces, Micro- system Technologies 11 (2005) 535-549. DOI: https://doi.org/10.1007/s00542-005-0602-9
  • [20] Y.C. Jung, B. Bhushan, Contact Angle, Adhesion, and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity, Nanotechnology 17/19 (2006) 4970-4980. DOI: https://doi.org/10.1088/0957-4484/17/19/033
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-effb1f88-d558-4580-97d1-8df0f8a2ef84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.