PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical Analyses of Productivity Model Parameters for Process Improvement

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Productivity modeling and validation is the assessment of data to establish scientific indications that a process is stable. The aim of this paper is to present a novel approach using statistical analyses for process improvement. This study highlights the process behavior of three different lathe machines unit with the intention to replace one of them. The research methodology has illustrated by producing a steel rod of 3.175 millimeter diameter based on 180 samples collected from each machine. For statistical data value analysis, MS Excel 2016 and Minitab 18 were utilized. The results showed that lathe machine 1 and 2 had an equivalent inconsistency, but significantly different data spreads. Similarly, the throughput for machine 2 was higher with greater variability as compared to machine 1 while machine 3 encountered a low rate of throughput. On the basis of the fallouts of the analysis, the research team has officially suggested to substitute lathe machine 3.
Twórcy
  • Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan
Bibliografia
  • 1. Bohannan B.J.M. and R.E. Lenski, The relative importance of competition and predation varies with productivity in a model community. The American Naturalist, 156(4), 2000.
  • 2. Halpern L., M. Koren, and A. Szeidl, Imported inputs and productivity. Am. Econ. Rev., 2015.
  • 3. Stock C.A. et al., Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci., 2017.
  • 4. Grace J.B. et al., Productivity and plant species richness. Nature, 2016.
  • 5. Sparke M., B. Mullings, M.W. Wright, K. Derickson, B.R. Wilson, and M. Werner, Global Displacements: the making of uneven development in the caribbean. AAG Rev. Books, 5(1), 2017, 74–85.
  • 6. O’Donnell T.J., Productivity and reuse in language. MIT Press, 2015.
  • 7. La Rosa M., W.M.P. Van Der Aalst, M. Dumas, and F.P. Milani, Business process variability modeling. ACM Comput. Surv., 2017.
  • 8. Gröner G., M. Bošković, F.S. Parreiras, and D. Gašević, Modeling and validation of business process families. Inf. Syst., 2013.
  • 9. Moses et al., Revisiting a model of ontogenetic growth: estimating model parameters from theory and data. The American Naturalist, 171(5), 2008.
  • 10. Acernese F. et al., Advanced Virgo: A second-generation interferometric gravitational wave detector, Class. Quantum Gravity, 32(2), 2015, p. 024001. .
  • 11. Rozlin N., N. Masdek, A.A. Rozali, M.C. Murad, and Z. Salleh, Effect of Protein Concentration on Corrosion of Ti-6Al-4V and 316L SS Alloys. ISIJ Int., 58(8), 2018, 1519–1523.
  • 12. Minne E. and J.C. Crittenden, Impact of maintenance on life cycle impact and cost assessment for residential flooring options. Int. J. Life Cycle Assess., vol. 20, no. 1, pp. 36–45, Jan. 2015.
  • 13. Beall G. , M. Gallagher, K. House, … S. I.-U. P. A. 12, and U. 2011, “Method and binder for porous articles”, Google Patents.
  • 14. Sanchez E., F. Gines, J.V Agramunt, and M. Monzo, Clay quality control in tile body production. qualicer.org, pp. 97–112.
  • 15. Gong Y.Z. and H. Liao, Analysis and Research of Rogowski Coil Current Sensing Technology.Appl. Mech. Mater., 2014.
  • 16. Hilfiker J.N., J. Sun, and N. Hong, Data analysis. in Springer Series in Optical Sciences, 2018.
  • 17. Srivastava P. and N. Hopwood, A Practical Iterative Framework for Qualitative Data Analysis.Int. J. Qual. Methods, 2017.
  • 18. Fereday J. and E. Muir-Cochrane, demonstrating rigor using thematic analysis: a hybrid approach of inductive and deductive coding and theme development. Int. J. Qual. Methods, 2017.
  • 19. Bumblauskas D., H. Nold, P. Bumblauskas, and A. Igou, Big data analytics: transforming data to action. Bus. Process Manag. J., 2017.
  • 20. Kumar R. and R. Kumar, Chapter 10. Data analysis and interpretation. Nursing Research & Statistics, 2016.
  • 21. Lenting K., R. Verhaak, M. ter Laan, P. Wesseling, and W. Leenders, Glioma: experimental models and reality. Acta Neuropathologica, 2017.
  • 22. Lassmann H. and M. Bradl, Multiple sclerosis: experimental models and reality. Acta Neuropathologica, 2017.
  • 23. Dunn B., Materials and processes for spacecraft and high reliability applications, vol. 8, 2016.
  • 24. Urbinati A., D. Chiaroni, and V. Chiesa, Towards a new taxonomy of circular economy business models. J. Clean. Prod., 2017.
  • 25. Yang M., P. Smart, M. Kumar, M. Jolly, and S. Evans, Product-service systems business models for circular supply chains. Prod. Plan. Control, 2018.
  • 26. Zhou L., J. Li, F. Li, Q. Meng, J. Li, and X. Xu, Energy consumption model and energy efficiency of machine tools: A comprehensive literature review. Journal of Cleaner Production, 2016.
  • 27. Smalheiser N.R., ANOVA, in Data Literacy, 2017.
  • 28. Randhawa J.S. and I. S. Ahuja, Empirical investigation of contributions of 5S practice for realizing improved competitive dimensions, Int. J. Qual. Reliab. Manag., 35(3), 2018, 779–810.
  • 29. Chung M.K. Statistical and Computational Methods in Brain Image Analysis. CRC Press, 2013.
  • 30. Laerd Statistics, One-way ANOVA in SPSS Statistics. Laerd Statistics, 2017.
  • 31. Kim T.K., Understanding one-way anova using conceptual figures. Korean J. Anesthesiol., 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eff9f009-36c6-424e-a14d-a56ce225a322
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.