PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibility of using a tuned inductor in a power device to improve the quality of electricity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work focuses on the concept of operation and possibility of using a tuned inductor in electrical power systems with adaptive features. The idea presented here for the operation of the inductor is a new approach to the design of such devices. An example of a power adaptive system is a device for improving the quality of electricity. The negative impact of nonlinear loads on the operation of a power grid is a well-documented phenomenon. Hence, various types of “compensators” for reactive power, or for both reactive and distortion power, are used in electrical systems as a preventive measure. The concept of an inductor presented here offers wider possibilities for power compensation in power supply systems, compared to traditional solutions involving compensators based on fixed inductors. The use of the proposed solution in an adaptive compensator is only one example of its possible implementation in the area of power devices. In this work, we discuss the structure of the compensator, the basic aspects of the operation of the inductor, the results of simulation studies and the results of measurements obtained from a prototype.
Rocznik
Strony
1065--1080
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
  • Institute of Electrical Engineering and Electronics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland
  • Institute of Electrical Engineering and Electronics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland
Bibliografia
  • [1] Masetti C., Revision of European Standard EN 50160 on power quality: Reasons and solutions, Proceedings of the 14th International Conference on Harmonics and Quality of Power – ICHQP, Bergamo, Italy (2010), DOI: 10.1109/ICHQP.2010.5625472.
  • [2] Pasko M., Buła D., Dębowski K., Grabowski D., Maciążek M., Selected methods for improving operating conditions of three-phase systems working in the presence of current and voltage deformation – Part I, Archives of Electrical Engineering, vol. 67, no. 3, pp. 591–602 (2018), DOI: 10.24425/123665.
  • [3] Akagi H., Watanabe E.H., Aredes M., Instantaneous power theory and applications to power conditioning, John Wiley & Sons: Hoboken, NJ, USA (2017), DOI: 10.1002/9781119307181.
  • [4] Rashid M.H., Power Electronics Handbook, Elsevier Ltd. Oxford (2018).
  • [5] Qiao X., Bian J., Chen C., Li H., Comparison and analysis of reactive power compensation strategy in power system, Proceedings of IEEE Sustainable Power and Energy Conference (IEEE iSPEC), pp. 689–692 (2019), DOI: 10.1109/iSPEC48194.2019.8975301.
  • [6] Czarnecki L., Almousa M., Adaptive balancing by reactive compensators of three-phase linear loads supplied by nonsinusoidal voltage from four-wire lines, American Journal of Electrical Power and Energy Systems, vol. 10, no. 3, pp. 32–42 (2021), DOI: 10.11648/j.epes.20211003.11.
  • [7] Gwóźdź M., Wojciechowski R.M., Ciepliński Ł., Power supply with parallel reactive and distortion power compensation and tunable inductive filter – Part 2, Bulletin of the Polish Academy of Sciences,
  • [8] Trinh Q., Lee H., An enhanced grid current compensator for grid-connected distributed generation under nonlinear loads and grid voltage distortions, IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6528–6537 (2014), DOI: 10.1109/TIE.2014.2320218.
  • [9] Ye T., Dai N., Zhu M., Optimize the series LC design of a quasi-proportional-resonant controlled hybrid active power filter for harmonic compensation, Proceedings of the 11th Conference on Industrial Electronics and Applications (IEEE ICIEA), pp. 624–629 (2016), DOI: 10.1109/ICIEA.2016.7603659.
  • [10] Lee Y., Song H., A reactive power compensation strategy for voltage stability challenges in the Korean power system with dynamic loads, Sustainability, vol. 11, no. 2, p. 326 (2019), DOI: 10.3390/su11020326.
  • [11] https://www.ansys.com/products/electronics/ansys-maxwell, accessed March 2022.
  • [12] Non grain oriented electrical steel powercore, Thyssenkrupp Steel, https://www.thyssenkrupp-steel.com/media/content_1/publikationen/lieferprogramme/thyssenkrupp_product-range_no-electrical-steel_powercore_steel_en.pdf, accessed March 2022.
  • [13] Knypiński Ł., Nowak L., Demenko A., Optimization of the synchronous motor with hybrid permanent magnet excitation system, COMPEL, vol. 34, no. 2, pp. 448–4552 (2015), DOI: 10.1108/COMPEL-08-2014-0216.
  • [14] Devarapalli R., Sinha N.K., Venkateswara Rao B., Knypinski Ł., Naga Lakshmi N.J., Márquez F.P.G., Allocation of real power generation based on computing over all generation cost: Sn approach of salp swarm algorithm, Archives of Electrical Engineering, vol. 70, no. 2, pp. 337–349 (2021), DOI: 10.24425/aee.2021.136988.
  • [15] Balakrishnan A., Joines W., Wilson T., Air-gap reluctance and inductance calculations for magnetic circuits using a Schwarz-Christoffel transformation, Proceedings of PESC ’95 – Power Electronics Specialist Conference, vol. 2, pp. 1050–1056 (1995), DOI: 10.1109/PESC.1995.474945.
  • [16] Zhang X., Xiao F., Wang R., Fan X., Wang H., Improved calculation method for inductance value of the air-gap inductor, Proceedings of the 1st China International Youth Conference on Electrical Engineering (IEEE CIYCEE), pp. 1–6 (2020), DOI: 10.1109/CIYCEE49808.2020.9332553.
  • [17] Yang Y., Ma J., Ho C., Zou Y., A new coupled-inductor structure for interleaving bidirectional DC-DC converters, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 3, pp. 841–849 (2015), DOI: 10.1109/JESTPE.2015.2443178.
  • [18] Dubois H., Magnetic circuit in theory and practice, Book (2015), Nabu Press Publisher.
  • [19] Chong E., Zak S., An introduction to optimization, 4th edition, Wiley Publishing (2013).
  • [20] Escarela-Perez R., Campero-Littlewood E., Arjona-Lopez M., Laureano-Cruces A., Comparison of two techniques for two-dimensional finite-element inductance computation of electrical machines, IEEE Proceedings – Electric Power Applications, vol. 152, no. 4, pp. 855–861 (2005), DOI: 10.1049/ip-epa:20055242.
  • [21] Fouad F., Nehl T., Demerdash N., Saturated transformer inductances determined by energy perturbation techniques, IEEE Transactions on Power Apparatus and Systems, vol. PAS-101, no. 11 (1982), DOI: 10.1109/TPAS.1982.317363.Technical Sciences, vol. 69, no. 4, pp. 1–9 (2021), DOI: 10.24425/bpasts. 2021.137938.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eff7fbe2-f1ef-4ae6-b8a4-a2b11f895ce7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.