Wojciech LUDWIG, Wojciech SAWIŃSKI

e-mail: wojciech.ludwig@pwr.wroc.pl Zakład Inżynierii Chemicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław

Zastosowanie metody PIV do pomiaru burzliwych pól prędkości w mieszalniku strumieniowym

Wstęp

Mieszanie jest ważną operacją jednostkową szeroko stosowaną w inżynierii chemicznej oraz innych gałęziach przemysłu. Przykładem aparatów, w których mieszanie odbywa się za pomocą strumienia cieczy są mieszalniki strumieniowe. Zaletą mieszania strumieniowego jest brak ruchomych części wewnątrz aparatu, stosunkowo prosta konstrukcja, a co za tym idzie niezawodność oraz efektywne i szybkie mieszanie [*Jayanti, 2001; Zughbi i Rakib, 2004*].

Podstawowymi parametrami wpływającymi na odbywający się w mieszalnikach strumieniowych proces są oprócz budowy zbiornika: geometria i prędkość rozchodzącej się z dyszy strugi [*Jayanti, 2001*]. Przy pomiarach tych parametrów ze względu na wysoką prędkość przepływającej cieczy, dużą burzliwość i niejednorodność strugi napotyka się często na duże trudności, zwłaszcza przy użyciu metod inwazyjnych.

Zdecydowanie łatwiejsze w przeprowadzeniu są badania za pomocą technik nieinwazyjnych [Szafran i in., 2011a]. Obecnie najczęściej stosowanymi metodami nieinwazyjnego pomiaru parametrów przepływu są metody PLV (Pulse Light Velocimetry) [Zając i Ulbrich, 2005]. W technikach tych do obszaru pomiaru, oświetlonego silnym źródłem światła, wprowadzane są specjalne cząstki, zwane traserami, które umożliwiają określenie zachowania się warstw cieczy. Obserwacja przesunięć traserów pozwala wyznaczyć prędkości fazy ciągłej, w której się znajdują. Przy przekroczeniu pewnej koncentracji traserów, rozpoznanie i wyznaczenie położenia danej cząstki jest możliwe tylko na pojedynczych klatkach filmu. W związku z tym określa się metodami statystycznymi najbardziej prawdopodobne średnie przesunięcie wszystkich traserów wewnątrz komórki pomiarowej (PIV (Particle Image Velocimetry) [Adrian, 1991]. Największą wadą metody PIV jest przede wszystkim wysoki koszt zestawu, który może sięgać kilkuset tysięcy złotych [Zając i Ulbrich, 2005; Szafran i in., 2011a]. Jako źródła światła używa się w tym przypadku najczęściej laserów impulsowych, które sa bardzo drogie.

Celem pracy było przetestowanie przydatności zbudowanego w Zakładzie Inżynierii Chemicznej Politechniki Wrocławskiej niskobudżetowego układu PIV do pomiaru burzliwych pól prędkości w mieszalniku strumieniowym projektowanym do odsalania ropy naftowej.

Badania doświadczalne

Instalacja badawcza

Badania prowadzone były w układzie pomiarowym przedstawionym na rys. 1. Woda zasysana była z górnej części zbiornika szklanego – 1 o wymiarach: wysokość 0,64 m, długość 0,286 m, szerokość 0,286 m, a następnie tłoczona pompą membranową – 2 przez rotametr – 4 i tłumik pulsacji – 6 do dyszy – 5 średnicy 2 mm, która umieszczona była centralnie w odległości 0,4 m od dna aparatu. Pompa – 2 miała możliwość regulacji objętościowego natężenia przepływu, które mierzone było rotametrem – 4. Manometr – 3 umożliwiał pomiar ciśnienia na przewodzie tłoczącym.

Instalację badawczą napełniano wodą i odpowietrzano, następnie dodawano cząstki znacznikowe, włączano pompę i ustawiano objętościowe natężenie przepływu (6,3÷16,6 ml/s). Po ustaleniu się wewnątrz aparatu warunków hydrodynamicznych ustawiano laser. Był on tak usytuowany naprzeciw zbiornika, aby wiązka laserowa oświetlała oś wypływającej z dyszy strugi. Następnie nagrywano za pomocą kamery krótką sekwencję filmową z prędkością 100 kl/s, którą poddawano obróbce.

Rys. 1. Schemat instalacji badawczej: *I* – zbiornik szklany, *2* – pompa, *3* – manometr, *4* – rotametr, *5* – dysza, *6* – tłumik pulsacji

Układ pomiarowy

Układ pomiarowy PIV składał się z trzech zasadniczych elementów: źródła światła, urządzenia rejestrującego oraz cząstek znacznikowych.

Żródło światła stanowił pracujący w sposób ciągły zielony laser liniowy firmy Z-laser model Z40RG SET o mocy 40 mW emitujący promieniowanie o długości fali 532 nm. Ma on możliwość wyświetlania bardzo długich linii długości 20 m i grubości około 2 mm.

Rejestracja w trakcie pomiarów była prowadzona za pomocą kamery HDR-FX7E firmy *Sony*. Rejestracja odbywała się z częstotliwością 25 i 100 klatek na sekundę, a rozdzielczość obrazów wynosiła 1440 ×1080 pikseli (*Full HD*).

Cząstki znacznikowe wprowadzane do układu podczas badań były syntetycznymi traserami PSP firmy *Dantec Dynamics*. Były to poliamidowe, okrągłe cząstki o średniej średnicy 50 µm i gęstości 1030 kg/m³. We wszystkich pomiarach stężenie cząstek znacznikowych wynosiło 0,06 g/dm³. Wartość ta była wyznaczona we wcześniejszych badaniach [*Szafran i inni, 2011b*]. Dzięki zastąpieniu wyspecjalizowanego lasera impulsowego łatwo dostępnym ciągłym laserem przemysłowym i zastosowaniu amatorskiej kamery udało się zredukować koszty zestawu do około 20 000 zł – o rząd wielkości mniej, niż w przypadku specjalistycznych urządzeń.

Oprogramowanie służyło do przetworzenia sekwencji filmowej zarejestrowanej za pomocą opisanego powyżej zestawu na pole prędkości. Należy podkreślić, że na każdym etapie obróbki danych wykorzystywano darmowe oprogramowanie. Najważniejszym elementem był tu pakiet [*GPIV, 2009*] obliczający pole prędkości na podstawie zarejestrowanych klatek filmu. Do analizy program ten wykorzystuje bibliotekę *libgpiv* oraz *Gpiv-tools*, umożliwia wizualizację domeny obliczeniowej (klatek filmu), wyświetlanie położenia i zasięgu obszarów obliczeniowych, obróbkę sekwencji obrazów, podawanie ich podstawowych parametrów, definiowanie skali czasowej i geometrycznej, a także wybór metody obliczeniowej (typ funkcji korelacji, estymacji subpikselowej itp.).

Metodyka obliczeń i wyniki

W trakcie badań występował przepływ burzliwy, nieustalony, należało więc opracować metodę uśredniania pola prędkości cieczy (wyznaczenie minimalnej liczby prędkości lokalnych do uśredniania). W tym celu obliczano prędkości chwilowe w trzech odległościach od wylotu dyszy mieszającej (207, 246 i 275 mm), dla dwóch natężeń przepływu 11,3 i 16,6 ml/s.

Następnie obliczano średnie pole prędkości płynu (jako średnią arytmetyczną) biorąc różną liczbę prędkości chwilowych (od 10 do 100). Średnie pola prędkości porównywano z zależnościami literaturowymi: równaniami *Schlichtinga i Bina [Kmieć i in., 2003*]. INŻYNIERIA I APARATURA CHEMICZNA

Średnie odchylenie od wartości obliczonych z zależności literaturowych malało wraz ze wzrostem liczby punktów pomiarowych branych do uśredniania osiągając wartość minimalną 6 i 7% dla 100 punktów, przy czym powyżej 50 punktów nie zmieniało się w sposób znaczący (Rys. 2). Aby skrócić czas obliczeń, jednocześnie zachowując wymagana dokładność, wartość tę przyjęto jako odpowiednia.

Układ pomiarowy użyto do wyznaczania uśrednionych pól prędkości w obszarze wypływu z dyszy ($l = 100 \div 250$ mm) przy różnych objętościowych natężeniach przepływu cieczy zasilającej (6,3÷16,6 ml/s). Uśrednione rozkłady promieniowe prędkości płynu w różnych odległościach od dyszy porównywano z zależnościami *Schlichtinga i Bina*, a także przybliżano metodą najmniejszych kwadratów krzywą *Gaussa* wyznaczając jej współczynniki, a poprzez to parametry strugi (d, u_{max}). W ten sposób otrzymano krzywe zależności prędkości maksymalnej strugi oraz jej średnicy od objętościowego natężenia przepływu cieczy zasilającej oraz odległości od wylotu dyszy. Typowe zależności przedstawiono na wykresach (Rys. 3 i 4).

Wyniki pomiarów wskazują, że prędkość maksymalna wypływającej strugi maleje wraz ze wzrostem odległości od wylotu dyszy zasilającej (Rys. 3 i 5), co związane jest z przekazywaniem przez nią energii kinetycznej cieczy w zbiorniku. Natomiast średnica wypływającej strugi rośnie wraz ze wzrostem odległości od wylotu dyszy zasilającej, co wynika ze stożkowego kształtu strugi (Rys. 4). Prędkość w wypływającej strudze w tych samych odległościach od dyszy rośnie wraz ze wzrostem natężenia przepływu cieczy zasilającej.

Zaobserwowane zależności zgodne są z obserwacjami oraz danymi literaturowymi. Zmierzone profile prędkości w strudze wykazywały zgodność z korelacjami *Bina i Schlichtinga*. Średnie odchylenie wynosiło odpowiednio: 15,5 i 8%.

Rys. 5. Rozkłady prędkości w strudze w różnych odległościach od wylotu z dyszy przy objętościowy natężeniu przepływu 16,6 ml/s

Na wykresach promieniowych profili prędkości cieczy mierzonych w rożnych odległościach od wylotu z dyszy można zaobserwować niewielkie odchylenie położenia maksimum prędkości od linii osi dyszy (Rys. 5). Związane jest prawdopodobnie z niemożnością precyzyjnego ręcznego pionowania dyszy. Na wykresie na rys. 5 wartości prędkości po prawej stronie osi strugi w zauważalnym stopniu wykazują większe odchylenie względem krzywej *Gaussa* niż dla odpowiadających im wielkości po lewej stronie. Było to związane z niedoświetleniem tej części strumienia wypływającego z dyszy (zbyt słabe źródło światła).

Wnioski

Na podstawie badań można stwierdzić, że testowany niskobudżetowy układ pomiarowy nadaje się do pomiaru burzliwych pól prędkości w przebadanych zakresie (do prędkości 300 mm/s).

Głównym czynnikiem ograniczającym pomiary pól o większych prędkościach jest kamera, która rejestruje jedynie z częstotliwością do 100 klatek/s oraz laser o zbyt małej mocy, aby móc oświetlić z właściwą intensywnością cały aparat.

Przetestowany układ zostanie w przyszłości wykorzystany w procesie optymalizacji mieszalnika strumieniowego do odsalania ropy naftowej.

Oznaczenia

- d -średnica strugi wypływającej z dyszy, [mm]
- l odległość od wylotu dyszy, [mm]
- r odległość od osi strugi, [mm]
- *u* prędkość strugi uśredniona w czasie, [mm/s]

 u_{max} – uśredniona w czasie maksymalna prędkość w strudze, [mm/s]

LITERATURA

- Adrian R.J., 1991. Imaging techniques for experimental fluid mechanics *Annu. Rev. Fluid Mech.*, 23, 261-304. DOI: 10.1146/annurev.fl.23.010191.001401
- GPIV, 2009. A program to record and interrogating images for PIV, Author: Gerber van der Graaf (12.2013): http://gpiv.sourceforge.net/
- Jayanti S., 2001. Hydrodynamics of jet mixing in vessels. Chem. Eng. Sci., 56, 193-210. DOI: 10.1016/S0009-2509(99)00588-6
- Kmieć A., Kowal P., Szafran R. G., Englart S., 2003. Effect of solids on liquid velocity distribution and power input in a jet loop reactor *Inż. Chem. Proc.*, 24, 33–46.
- Szafran R.G., Ludwig W., Patronik P., 2011a. Bezinwazyjne metody pomiaru pól prędkości płynu. Część I: opis układu pomiarowego PIV. *Przem. Chem.*, 90, nr 4, 580-586
- Szafran R.G., Ludwig W., Patronik P., 2011b. Bezinwazyjne metody pomiaru pól prędkości płynu. Część II: Walidacja układu pomiarowego oraz kodów numerycznych Przem. Chem., 90, nr 4, 587-590
- Zając D., Ulbrich R., 2005. Nieinwazyjne metody badań przepływów dwufazowych gaz-ciecz. Studia i Monografie. Wyd. Pol. Opolskiej, Opole
- Zughbi H. D., Rakib M. A., 2004. Mixing in a fluid jet agitated tank: effect of jet angle and elevation and number of jets. *Chem. Eng. Sci.*, **59**, 829–842. DOI: 10.1016/j.ces.2003.09.044

Badania były finansowane przez Ministerstwo Nauki i Szkolnictwa Wyższego w ramach grantu badawczego 1 T09C 006 30.

Autorzy pragną podziękować mgr inż. Annie Galant za pomoc w wykonaniu doświadczeń.