PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simultaneous shape and mesh quality optimization using pre-shape calculus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computational meshes arising from shape optimization routines commonly suffer from decrease of mesh quality or even destruction of the mesh. In this work, we provide an approach to regularize general shape optimization problems to increase both shape and volume mesh quality. For this, we employ pre-shape calculus as established in Luft and Schulz (2021). Existence of regularized solutions is guaranteed. Further, consistency of modified pre-shape gradient systems is established. We present pre-shape gradient system modifications, which permit simultaneous shape optimization with mesh quality improvement. Optimal shapes to the original problem are left invariant under regularization. The computational burden of our approach is limited, since additional solution of possibly larger (non-)linear systems for regularized shape gradients is not necessary. We implement and compare pre-shape gradient regularization approaches for a 2D problem, which is prone to mesh degeneration. As our approach does not depend on the choice of metrics representing shape gradients, we employ and compare several different metrics.
Rocznik
Strony
473--520
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Trier University, Department of Mathematics, 54286 Trier, Germany
  • Trier University, Department of Mathematics, 54286 Trier, Germany
Bibliografia
  • Alnaes, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E. and Wells, G.N. (2015) The FEniCS project version 1.5. Archive of Numerical Software, 3(100).
  • Cao, W., Huang, W. and Russell, R.D. (1999) A Study of Monitor Functions for Two- Dimensional Adaptive Mesh Generation. SIAM Journal on Scientific Computing, 20(6): 1978–1994.
  • Dacorogna, B. and Moser, J. (1990) On a Partial Differential Equation Involving the Jacobian Determinant. In: Annales de l’Institut Henri Poincar´e (C) Non Linear Analysis, 7, 1–26. Elsevier.
  • Deckelnick, K., Herbert, P.J. and Hinze, M. (2021) A Novel W1;1 Approach to Shape Optimisation with Lipschitz Domains. arXiv preprint arXiv:2103.13857.
  • Etling, T., Herzog, R., Loayza, E. and Wachsmuth, G. (2018) First and second order shape optimization based on restricted mesh deformations. arXiv preprint arXiv:1810.10313.
  • Friederich, J., Leugering, G. and Steinmann, P. (2014) Adaptive Finite Elements based on Sensitivities for Topological Mesh Changes. Control and Cybernetics, 43(2); 279–306.
  • Geuzaine, C. and Remacle, J.-F. (2009) Gmsh: A 3D Finite Element Mesh Generator with Built-In Pre-and Post-Processing Facilities. International Journal for Numerical methods in Engineering, 70(11): 1309–1331.
  • Guillemin, V. and Pollack, A. (2010) Differential Topology, 370. American Mathematical Society.
  • Haubner, J., Siebenborn, M. and Ulbrich, M. (2020) A Continuous Perspective on Modeling of Shape Optimal Design Problems. arXiv preprint arXiv:2004.06942.
  • Herzog, R. and Loayza-Romero, E. (2020) A Manifold of Planar Triangular Meshes with Complete Riemannian Metric. arXiv preprint arXiv:2012.05624.
  • Lee, J.M. (2009) Manifolds and Differential Geometry. Graduate Studies in Mathematics 107. American Mathematical Society.
  • Logg, A., Mardal, K.-A., Wells, G.N., et al. (2012) Automated Solution of Differential Equations by the Finite Element Method. Springer.
  • Luft, D. and Schulz, V. (2021) Pre-Shape Calculus: Foundations and Application to Mesh Quality Optimization. Control and Cybernetics, 50(3); 263–301.
  • Müller, P.M., K¨uhl, N., Siebenborn, M., Deckelnick, K., Hinze, M. and Rung, T. (2021) A novel p-harmonic descent approach applied to fluid dynamic shape optimization. arXiv preprint arXiv:2103.14735.
  • Onyshkevych, S. and Siebenborn, M. (2020) Mesh Quality Preserving Shape Optimization using Nonlinear Extension Operators. arXiv preprint arXiv:2006.04420.
  • Savard, G. and Gauvin, J. (1994) The Steepest Descent Direction for the Nonlinear Bilevel Programming Problem. Operations Research Letters, 15(5): 265–272.
  • Schmidt, S. (2014) A Two Stage CVT/Eikonal Convection Mesh Deformation Approach for Large Nodal Deformations. arXiv preprint arXiv:1411.7663.
  • Schulz, V. and Siebenborn, M. (2016) Computational Comparison of Surface Metrics for PDE Constrained Shape Optimization. Computational Methods in Applied Mathematics, 16(3): 485–496.
  • Schulz, V., Siebenborn, M. and Welker, K. (2016) Effcient PDE Constrained Shape Optimization based on Steklov-Poincar´e Type Metrics. SIAM Journal on Optimization, 26(4): 2800–2819.
  • Shewchuk, J.R. (2002) What is a Good Linear Element? Interpolation, Conditioning, Anisotropy, and Quality Measures. Technical Report. University of California at Berkeley, Department of Electrical Engineering and Computer Science. Berkeley, CA.
  • Smolentsev, N.K. (2007) Diffeomorphism groups of compact manifolds. Journal of Mathematical Sciences, 146(6): 6213–6312.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efeec752-91dd-4e23-bb95-1ce94238a4de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.