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Abstract: Computational meshes arising from shape optimiza-
tion routines commonly suffer from decrease of mesh quality or even
destruction of the mesh. In this work, we provide an approach to reg-
ularize general shape optimization problems to increase both shape
and volume mesh quality. For this, we employ pre-shape calculus
as established in Luft and Schulz (2021). Existence of regularized
solutions is guaranteed. Further, consistency of modified pre-shape
gradient systems is established. We present pre-shape gradient sys-
tem modifications, which permit simultaneous shape optimization
with mesh quality improvement. Optimal shapes to the original
problem are left invariant under regularization. The computational
burden of our approach is limited, since additional solution of pos-
sibly larger (non-)linear systems for regularized shape gradients is
not necessary. We implement and compare pre-shape gradient reg-
ularization approaches for a 2D problem, which is prone to mesh
degeneration. As our approach does not depend on the choice of
metrics representing shape gradients, we employ and compare sev-
eral different metrics.

Keywords: shape optimization, mesh quality, mesh deforma-
tion method, shape calculus

1. Introduction

Solutions of PDE constrained optimization problems, in particular problems
where the desired control variable is a geometric shape, are only meaningful, if
the state variables of the constraint can be calculated with sufficient reliability.
A key component of reliable solutions is given by the quality of the computa-
tional mesh. It is well known that poor quality of elements affect the stability,
convergence, and accuracy of finite element and other solvers. This comes from
such effects as poorly conditioned stiffness matrices (see Shewchuk, 2002). We
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emphasize that the techniques we develop do not involve changes in mesh topolo-
gies, and particularly avoid remeshing or mesh refinements. However, they can
be combined with refinement and remeshing approaches.

There are a multitude of strategies for increasing mesh quality, particularly
in shape optimization. The authors of Etling et al. (2018) enhance mesh mor-
phing routines for shape optimization by trying to correct for the inexactness of
Hadamard’s theorem due to discretization of the problem. Correcting degener-
ate steps requires a restriction of deformation directions based on normal fields
of shapes, which leads to a linear system enlarged by additional constraints.

In Haubner, Siebenborn and Ulbrich (2020), an approach to shape optimiza-
tion using the method of mappings to guarantee non-degenerate deformations of
meshes is presented. For this, the shape optimization problem is regarded as an
optimization in function spaces. A penalty term for the Jacobian determinants
of the deformations is added, which leads to a non-smooth optimality system.
Deformations computed by solving this system have less tendency to degenerate
volumes of cells. These techniques are related to the techniques of our work, but
they do not include a mechanism to capture a target mesh volume distribution
as is presented here in subsequent sections. In Onyshkevych and Siebenborn
(2020) metrics for representing shape gradients are modified by adding a non-
linear advection term. For this, the shape derivative is represented on the shape
seen as a boundary mesh, which is then used as a Neumann condition to assem-
ble a system incorporating the non-linear advection term to represent a shape
gradient in volume formulation. This formulation advects nodes of the volume
mesh in order to mitigate element degeneration, but requires solution of a non-
linear system to construct the shape gradient. Then, in Schmidt (2014), the
author applies mesh smoothing, inspired by centroidal Voronoi reparameteriza-
tion, to construct a tangential field that corrects for degenerate surface mesh
cells. For correcting the volume mesh cell degeneration, a shape gradient repre-
sentation, featuring a non-linear advection term is used. This is motivated by
the eikonal equation, while orthogonality of the correction to shape gradients is
ensured by a Neumann condition.

In order to mitigate the roughness of gradients and the resulting degenera-
tion of meshes, Schulz, Siebenborn and Welker (2016) construct shape gradient
representations by the use of Steklov-Poincaré metrics. As an example they
propose the linear elasticity metric, giving a more regular shape gradient repre-
sentation by the solution of a linear system using volume formulations of shape
derivatives. In Herzog and Loayza-Romero (2020), the authors construct a Rie-
mannian metric for the manifold of planar triangular meshes with given fixed
connectivity, which makes the space geodesically complete. They propose a
mesh morphing routine by geodesic flows, using the Hamiltonian formulation
of the geodesic equation and solving by a symplectic numerical integrator. The
numerical experiments in Herzog and Loayza-Romero (2020) suggest that cell
aspect ratios are bounded away from zero and thus avoid mesh degradation
during deformations.
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Several of the aforementioned approaches require modification of the metrics
acting as left hand sides to represent shape gradients. Often, either non-linear
terms are added or systems are enlarged, which increases computational burden
significantly. Further, the mesh quality resulting from these regularized defor-
mations is arbitrary or of rather implicit nature, since no explicit criterion for
mesh quality is enforced.

In this work, we want to approach these two aspects differently. By using
pre-shape calculus techniques introduced in Luft and Schulz (2021), we propose
regularization techniques for shape gradients with two goals in mind. First, the
required computational burden should be limited. We achieve this by modifying
the right hand sides of shape gradient systems, instead of altering the metric.
This ensures that shape gradient systems neither increase in size nor become
non-linear. Secondly, our regularization explicitly targets mesh qualities defined
by the user. To do so, we enforce surface and volume cell distribution via the use
of pre-shape derivatives of pre-shape parameterization tracking problems. Non-
uniform node distributions according to targets can be beneficial, especially in
the context of PDE constrained optimization.

In Friederich, Leugering and Stainmann (2014), local sensitivities for min-
imization of the approximation error of linear elliptic second order PDE are
derived and used to refine computational meshes. Also, Cao, Huang and Rus-
sell (1999) studied various monitor functions (targets) for mesh deformation
methods in 2D by using elliptic and eigenvalue methods, e.g. to ensure cer-
tain coordinate lines of the mesh. Amongst other examples, this shows the
possible demand for targeted non-uniform adaptation of computational meshes.
Non-uniform cell distributions are possible with our approach, as our pre-shape
calculus techniques enable efficient routines solving shape optimization prob-
lems, which simultaneously optimize quality of the surface mesh representing
the shape and the volume mesh representing the hold-all domain. This is done in
a manner that does not interfere with the original shape optimization problem,
leaving optimal and intermediate shapes invariant.

A complementing literature review is found in the introduction of Luft and
Schulz (2021). For this work we build on results of Luft and Schulz (2021),
where pre-shape calculus is rigorously established. The results from Luft and
Schulz (2021) feature a structure theorem in the style of Hadamard’s theorem for
shape derivatives, which also shows the relationship of classical shape and pre-
shape derivatives. In particular, shape calculus and pre-shape differentiability
results carry over to the pre-shape setting. Further, the pre-shape parameteri-
zation tracking problem is introduced in Luft and Schulz (2021), Proposition 2,
Theorem 2, where existence of solutions is proven and a closed formula for the
pre-shape derivative is derived.

This work is structured in two sections. First, in Section 2 we establish
theoretical results for pre-shape regularization routines for shape and volume
mesh quality. In particular, Section 2.1 focuses on the regularization for shape
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mesh quality, while in Section 2.2 we take care of volume mesh quality regular-
ization for the hold-all domain. For both cases, existence results of regularized
pre-shape solutions are provided. Also, regularized pre-shape gradient systems
are formulated, and consistency of regularized and unregularized gradients is es-
tablished. In Section 3 we display our techniques for a model problem. Several
different (un-)regularized routines are tested. As a standard approach, we rec-
ommend the linear elasticity metric as found in Schulz and Siebenborn (2016).
To illustrate the general applicability of our regularization method, we also test
the very reasonable p-Laplacian metrics as inspired by Müller et al. (2021) to
represent gradients.

2. Theoretical aspects of regularization by pre-shape

parameterization tracking

The main goal of this paper is to introduce a regularization approach to shape
optimization, which increases mesh quality during optimization at minimal ad-
ditional computational cost. To achieve this, we proceed in two steps. First, in
Section 2.1, we analyze the case where the quality of the mesh modeling a shape
is optimized. This amounts to increasing quality of the (hyper-)surface shape
mesh, embedded in the volume hold-all domain. Then, in Section 2.2, we build
on the surface mesh case by also demanding to increase the volume mesh quality
of the hold-all domain. Both approaches need to satisfy two properties. On the
one hand, they must not interfere with the original shape optimization prob-
lem, i.e. leave the optimal shape or even intermediate shapes invariant. On the
other hand, to be practically feasible, the mesh quality regularization approach
should not increase computational cost. In particular, no additional solution of
linear systems should be necessary when compared to standard shape gradient
descent algorithms. We will achieve both properties for the case of simultaneous
shape and volume mesh quality optimization.

If not stated otherwise, we assume M ⊂ R
n+1 to be an n-dimensional,

orientable, path-connected and compact C∞-manifold without boundary. In
the light of Luft and Schulz (2021), we will assume Emb(M,Rn+1) to be the
space of pre-shapes and Bn

e := Emb(M,Rn+1)/Diff(M) to be the space of
shapes.

2.1. Simultaneous tangential mesh quality and shape optimization

In this subsection we formulate a regularized shape optimization problem to
track for desired shape mesh quality using pre-shape calculus. As mentioned in
the introduction, we heavily build on the results of Luft and Schulz (2021).
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2.1.1. Preliminaries for mesh quality optimization using pre-shapes

Throughout Section 2, we take a look at a general prototype shape optimization
problem

min
Γ∈Bn

e

J (Γ). (1)

Here we only assume that the shape functional J : Bn
e → R is first order shape

differentiable.

Now we reformulate eq. (1) in the context of pre-shape optimization by
the use of the canonical projection π : Emb(M,Rn+1) → Bn

e . The canonical
projection π maps each pre-shape ϕ ∈ Emb(M,Rn+1) to an equivalence class
π(ϕ) = Γ ∈ Bn

e , which consists of all pre-shapes mapping onto the same image
shape in R

n+1. We remind the reader that we can associate π(ϕ) with the set
interpretation ϕ(M) of the shape Γ. So, π(ϕ) can be interpreted as the set of all
parameterizations of a given shape Γ ∈ Bn

e in R
n+1. The pre-shape formulation

of eq. (1) takes the form

min
ϕ∈Emb(M,Rn+1)

(J ◦ π)(ϕ). (2)

It is important to notice that the extended target functional of eq. (2) is pre-
shape differentiable in the sense of Luft and Schulz (2021), Definition 3, since
we assumed J to be shape differentiable (see Luft and Schulz, 2021, Proposition
1).

Next, we need the pre-shape parameterization tracking functional introduced
in Luft and Schulz (2021), Proposition 2. In the discrete setting, this functional
allows us to track for given desired sizes of surface and volume mesh cells. For
this, let us assume functions gM : M → (0,∞) and fM

ϕ : ϕ(M)→ (0,∞) to be
smooth and fulfill the normalization condition

∫

ϕ(M)

fM
ϕ (s) ds =

∫

M

gM (s) ds ∀ϕ ∈ Emb(M,Rn+1). (3)

Further, we assume f to have shape functionality (see Luft and Schulz, 2021,
Definition 2), i.e.

fM
ϕ◦ρ = fM

ϕ ∀ρ ∈ Diff(M). (4)

Shape functionality for fM simply means that fM
ϕ1

= fM
ϕ2

for all pre-shapes
ϕ1, ϕ2 ∈ π(ϕ), corresponding to the same shape Γ = π(ϕ).

Finally, the pre-shape parameterization tracking problem takes the form

min
ϕ∈Emb(M,Rn+1)

1

2

∫

ϕ(M)

(

gM ◦ϕ−1(s)·detDτϕ−1(s)−fM
ϕ (s)

)2

ds =: Jτ (ϕ) (5)

where Dτ is the covariant derivative. For each shape Γ ∈ Bn
e there exists a

pre-shape ϕ ∈ π(ϕ) = Γ minimizing eq. (5), which is guaranteed by Luft and
Schulz (2021), Proposition 2.
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As we need the pre-shape derivative of the parameterization tracking func-
tional Jτ in order to devise our algorithms, we state it in the style of the pre-
shape derivative structure theorem (Luft and Schulz, 2021, Theorem 1):

DJτ (ϕ)[V ] = 〈gNϕ , V 〉+ 〈gTϕ , V 〉 ∀V ∈ C∞(Rn+1,Rn+1), (6)

with normal/ shape component

〈gNϕ , V 〉 = −

∫

ϕ(M)

dim(M)

2
·
(

(

gM ◦ ϕ−1 · detDτϕ−1
)2
− f2

ϕ

)

· κ · 〈V, n〉

+
(

gM ◦ ϕ−1 · detDτϕ−1 − fϕ

)

·
(∂fϕ
∂n
· 〈V, n〉+D(fϕ)[V ]

)

ds (7)

and tangential/ pre-shape component

〈gTϕ , V 〉 = −

∫

ϕ(M)

1

2
·
(

(

gM ◦ ϕ−1 · detDτϕ−1
)2
− f2

ϕ

)

· divΓ(V − 〈V, n〉 · n)

+
(

gM ◦ ϕ−1 · detDτϕ−1 − fϕ

)

· ∇Γf
T
ϕ V ds. (8)

Notice that we denote a duality pairing by 〈·, ·〉, and with D(fϕ)[V ] the classi-
cal shape derivative of fϕ in direction V . For the derivation of the pre-shape
derivative DJτ by the use of pre-shape calculus, we refer the reader to Luft and
Schulz (2021), Theorem 2, Corollary 2.

2.1.2. Regularization of shape optimization problems by shape pa-

rameterization tracking

All ingredients necessary to formulate a regularized version of a shape opti-
mization problem are now available. For ατ > 0, we add the parameterization
tracking functional in the style of a regularizing term to pre-shape reformulation,
eq. (2)

min
ϕ∈Emb(M,Rn+1)

(J ◦ π)(ϕ) + ατ · Jτ (ϕ). (9)

We already found that the pre-shape extension, eq. (2), of our initial shape
optimization problem is pre-shape differentiable. Hence, eq. (9) is pre-shape
differentiable as well. This is fundamental, since a pre-shape gradient system
for the regularized problem eq. (9) can always be formulated.

The pre-shape derivative DJ(ϕ)[V ] of the parameterization tracking prob-
lem (cf. eq. (6)) is well-defined for the weakly differentiable directions V ∈
H1(Rn+1,Rn+1). By assuming the same for the shape derivative DJ of the orig-
inal problem eq. (1), we can create a pre-shape gradient system for eq. (9) using
a weak formulation with H1-functions. Given a symmetric, positive-definite bi-
linear form a(., .) (see Schulz and Siebenborn, 2016, or Müller et al., 2021), such
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a system takes the form

a(UJ+J
τ

, V ) = DJ (Γ)[V ] + ατ ·〈gNϕ , V 〉 + ατ ·〈gTϕ , V 〉 ∀V ∈ H1(Rn+1,Rn+1).

(10)

With Γ = π(ϕ), the right hand side of eq. (10) is indeed the full pre-shape
gradient of eq. (9). This stems from the fact that the pre-shape extension J ◦π
has shape functionality by construction, which makes the pre-shape derivative
D(J ◦ π) equal to the shape derivative DJ by application of Luft and Schulz
(2021), Theorem 1 (iii).

The full pre-shape gradient system of eq. (10) already achieves simultaneous
solution of the shape optimization problem and regularization of shape mesh
quality. Namely, it is not required to additionally solve the linear systems to
create a mesh quality regularized descent direction UJ+J

τ

, since the original
shape gradient system to problem eq. (1) is modified by adding the two force
terms gN and gT . A calculation of a descent direction UJ+J

τ

= UJ + UJ
τ

by combining the shape gradient UJ and pre-shape gradient UJ
τ

, solving the
decoupled systems

a(UJ , V ) = DJ (Γ)[V ] ∀V ∈ H1(Rn+1,Rn+1) (11)

and

a(UJ
τ

, V ) = ατ · 〈gNϕ , V 〉+ ατ · 〈gTϕ , V 〉 ∀V ∈ H1(Rn+1,Rn+1) (12)

is in fact equivalent to solution of eq. (10).

However, if we use eq. (10) for gradient based optimization, the first de-
manded property of leaving the optimal or intermediate shapes invariant is not
true in general. This issue comes from involvement of the shape component gNϕ
(cf. Section 2.1.1) of the pre-shape derivative to the parameterization tracking
functional Jτ . It is acting solely in normal directions, therefore altering the
shapes by interfering with the shape derivative DJ of the original problem.

For this reason, we deviate from the full gradient system of eq. (10), consis-
tent with the regularized problem eq. (9) by using a modified system

a(Ũ , V ) = DJ (Γ)[V ] + ατ · 〈gTϕ , V 〉 ∀V ∈ H1(Rn+1,Rn+1). (13)

We project the pre-shape derivative DJτ onto its tangential part, which is re-
alized by simply removing the shape component gN from the right hand side
of the gradient system. By this, we still have numerical feasibility, while also
achieving invariance of optimal and intermediate shapes. Of course, invariance
is only true up to discretization errors. From a traditional shape optimization
perspective, this stems from considering eq. (13) as a shape gradient system with
additional force term acting on directions V in the kernel of the classical shape
derivative DJ . In particular, by Hadamard’s theorem or the structure theorem



480 D. Luft and V. Schulz

for pre-shape derivatives (Luft and Schulz, 2021, Theorem 1), directions tan-
gential to shapes Γ are in the kernel of DJ . Using the pre-shape setting, we
interpret these directions as vector fields corresponding to the fiber components
of Emb(M,Rn+1).

To sum up and justify the use of the pre-shape regularized problem, eq. (9),
and its modified gradient system, eq. (13), we provide existence of solutions and
consistency of the modified gradients with the regularized problem.

Theorem 1 (Shape Regularized Problems) Assume M ⊂ R
n+1 to be an

n-dimensional, orientable, path-connected and compact C∞-manifold without
boundary. Let the shape optimization problem of eq. (1) be shape differentiable
and have a minimizer Γ ∈ Bn

e . For shape parameterization tracking, let us
assume functions gM : M → (0,∞) and fM

ϕ : ϕ(M) → (0,∞) to be smooth,
fulfill the normalization condition of eq. (3), and f to have shape functionality
of eq. (4).

Then there exists a ϕ ∈ π(ϕ) = Γ ⊂ Emb(M,Rn+1) minimizing the shape
regularized problem, eq. (9).

The modified pre-shape gradient system of eq. (13) is consistent with the
full pre-shape gradient system of eq. (10) and the shape gradient system of the
original problem, eq. (11), in the sense that

Ũ = 0 ⇐⇒ UJ+J
τ

= 0 and UJ = 0. (14)

In particular, if UJ+J
τ

= 0 is satisfied, the necessary first order conditions for
eq. (9) and eq. (1) are satisfied as well.

Proof For the existence of solutions to the regularized problem, eq. (9), let us
assume that there exists a minimizer Γ ∈ Bn

e to the original problem, eq. (1).
By construction of the shape space Bn

e by equivalence relation there exists a
ϕ̃ ∈ Emb(M,Rn+1), such that Γ = π(ϕ̃). So, the set of pre-shapes π(ϕ̃) acts as
a set of candidates for solutions to eq. (9). Since we required shape functionality
of f and normalization condition, eq. (3), the existence and characterization
theorem for solutions to eq. (5) (see Luft and Schulz, 2021, Proposition 2) gives
existence of a global minimizer for Jτ in every fiber of Emb(M,Rn+1). In
particular, we can find such a ϕ in π(ϕ̃). From the last assertion of Luft and
Schulz (2021), Proposition 2, we also get that Jτ (ϕ) = 0. However, since Jτ ≥ 0
due to the quadratic nature of the parameterization tracking functional, we get
that ϕ is a solution to the regularized problem, eq. (9).

Next, we prove the non-trivial direction ’ =⇒ ’ for consistency of gradient
systems in the sense of eq. (14). Let us assume that we have a pre-shape gradient
Ũ = 0 stemming from the modified system, eq. (13). This immediately gives us

DJ (Γ)[V ] + ατ · 〈gTϕ , V 〉 = 0 ∀V ∈ H1(Rn+1,Rn+1). (15)

However, due to the structure theorem for pre-shape derivatives, Luft and Schulz
(2021), Theorem 1, we know that the support of the shape derivative DJ (Γ)
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and pure pre-shape component gTϕ are orthogonal. Hence, we have

DJ (Γ)[V ] = 0 and ατ · 〈gTϕ , V 〉 = 0 ∀V ∈ H1(Rn+1,Rn+1). (16)

This is the first order condition for eq. (1), also giving us UJ = 0.

It remains to show that the first order condition for the regularized problem,
eq. (9), is satisfied and the complete gradient UJ+J

τ

= 0. Essentially, this is
a special case of the result of Luft and Schulz (2021), Proposition 3, which
characterizes global solutions of eq. (5) by fiber stationarity. From eq. (16) we
see that ϕ ∈ Emb(M,Rn+1) is a fiber stationary point, since the full pre-shape
derivative DJτ (ϕ) vanishes for all directions V tangential to ϕ(M). Hence, Luft
and Schulz (2021), Proposition 3, states that ϕ is already a global minimizer of
Jτ and satisfies the corresponding necessary first order condition. Even more,
Luft and Schulz (2021), Proposition 3, gives the vanishing of gNϕ . Therefore, the
right hand side of the full gradient system eq. (10) is zero, giving us a vanishing
full gradient UJ+J

τ

.

Implication ’⇐’ can be seen by the fiber stationarity characterization as well.
Since vanishing of the shape gradient UJ gives DJ (Γ) = 0, the full pre-shape
derivative DJτ (ϕ) must be zero if the full pre-shape gradient UJ τ

= 0. Hence,
the fiber stationarity characterization of Luft and Schulz (2021), Proposition 3,
tells us that both gTϕ and gNϕ vanish for ϕ, which proves the other direction of
eq. (14). ✷

With Theorem 1 we can rest assured that optimization algorithms using
the tangentially regularized gradient U from eq. (13) leave stationary points
of the original problem invariant. Also, vanishing of the modified gradient Ũ
indicates that we have a stationary shape Γ = π(ϕ) with parameterization ϕ
having desired cell volume allocation fϕ. Of course, this is only true up to
discretization error. We also see that the modified gradient system, eq. (13),
captures the same information as the shape gradient system, eq. (11), and full
pre-shape gradient system, eq. (10), combined. This might seem counterintu-
itive at the first glance, especially since the necessary information is contained
in one instead of two gradient systems. However, by application of pre-shape
calculus to derive the fiber stationarity characterization of solutions, Luft and
Schulz (2021), Proposition 3, we recognize this circumstance as a consequence of
the special structure of the regularizing functional Jτ . The fact that pre-shape
spaces are fiber spaces with locally orthogonal tangential bundles for parame-
terizations and shapes (see Luft and Schulz, 2021, Section 2) is a fundamental
prerequisite to this. We will discuss numerical results comparing optimization
using standard shape gradients, eq. (11), and gradients regularized by modified
shape parameterization tracking, eq. (13), in Section 2.

Remark 1 (Applicability of Shape Regularization for General
Shape Optimization Problems) It is important to notice that we did not
need a specific structure of the original shape optimization problem, eq. (1). The
only assumptions made are shape differentiability and existence of an optimal
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shape for J . This means that the tangential mesh regularization via Jτ (cf.
eq. (9)) is applicable for almost every meaningful shape optimization problem.
In particular, PDE-constrained shape optimization problems can be regularized
by this approach, which we will discuss in Section 3. Also, the modified gradient
system structure of eq. (13) stays the same for different shape optimization tar-
gets J . It is solely the shape derivative DJ on the right hand side which changes
depending on the shape problem target. Finally, existence of solutions and con-
sistency of stationarity and first order conditions are guaranteed as stated in
Theorem 1.

Remark 2 (Equivalent Bi-Level Formulation of the Regularized
Problem) It is also possible to formulate the shape mesh regularization as a
nonlinear bilevel problem

min
ϕ∈Emb(M,Rn+1)

Jτ (ϕ)

s.t. π(ϕ) = argmin
Γ∈Bn

e

J (Γ).
(17)

The upper level pre-shape optimization problem depends only on the lower level
shape optimization problem by the latter restricting the set of feasible points
ϕ. So, intuitively, solving the problem of eq. (17) amounts to solving the lower
level problem for a shape Γ, and then to looking for an optimal parameterization
ϕ ∈ Γ ∈ Bn

e in the fiber corresponding to the optimal shape. If a solution to
the lower level shape optimization problem exists, a solution ϕ to the upper level
problem exists as well (see Luft and Schulz, 2021, Proposition 2). The lower
level problem enforces that the optimal shape Γ coincides with the fiber π(ϕ).

The bilevel formulation motivates the modified gradient system of eq. (13) in
a consistent manner. For this, we can take the perspective of nonlinear bilevel
programming as in Savard and Gauvin (1994). In finite dimensions, the authors
of Savard and Gauvin (1994) propose a way to calculate a descent direction by
solving a bilevel optimization problem derived from the original problem. We
remind the reader that we formulated our systems as gradient systems and not
descent directions, hence a change of sign compared to systems for descent direc-
tions in Savard and Gauvin (1994) has to occur. Also notice that the additional
constraint π(ϕ) = Γ for the feasible set of solutions has to be added to formu-
late our bilevel problem in the exact style of Savard and Gauvin (1994). We
can proceed with a symbolic calculation following Savard and Gauvin (1994),
Chapter 2, using relations from Luft and Schulz (2021), Theorem 1 (ii), (iii)
for pre-shape derivatives and the fact that Jτ does not explicitly depend on Γ of
the subproblem and J not explicitly on ϕ of the upper level problem. This yields
a bilevel problem for the gradient U to eq. (17)

max
U∈H1(Rn+1,Rn+1),‖U‖≤1

DJτ (ϕ)[U ]

s.t. UN = argmax
W∈H1(Rn+1,Rn+1),‖W‖≤1

DJ (Γ)[W ],
(18)
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where UN is the component of U normal to Γ. In Savard and Gauvin (1994),
Chapter 3, a descent method is employed for eq. (18) by alternating computation
of Wk and Uk.

For our situation, a gradient Wk for the lower level problem of eq. (18) cor-
responds to UJ solving the shape gradient system of eq. (11). With this, the
lower level constraint fixes the normal component of U to be the shape deriva-
tive of the original problem of eq. (1). By decomposing U = UT + UN into
tangential and normal directions, we see that the fixed normal component makes
DJτ (ϕ)[UN ] = 0 a constant not relevant for the upper level problem. This lets
us rewrite the system as

min
UT ∈H1(Rn+1,Rn+1),‖UT ‖≤1

〈gTϕ , UT 〉

s.t. UN = UJ

U = UT + UN .

(19)

We clearly see that the minimization of the tangential component gTϕ in eq. (19)
does not depend on the constraints given below. Hence, it can be decoupled, so
by considering ατ > 0 this leads to a gradient system

a(UT , V ) = ατ · 〈gTϕ , V 〉 ∀V ∈ H1(Rn+1,Rn+1). (20)

With the same orthogonality arguments made for eq. (11) and eq. (12), a separate
computation of UJ and Uτ as in the general case in Savard and Gauvin (1994)
is not necessary in our case. The gradient U = UT +UN for the bilevel problem
of eq. (17) can be calculated using a single system, which coincides exactly with
the modified gradient Ũ from the system of eq. (13). With Theorem 1, this
means that using the modified pre-shape gradient Ũ as a descent direction in
fact solves the bi-level problem of eq. (17), the regularized problem of eq. (9),
and the original shape problem of eq. (1) at the same time.

2.2. Simultaneous volume mesh quality and shape optimization

In this section we introduce the necessary machinery for a regularization strat-
egy of volume meshes representing the hold-all domain D. We will also incorpo-
rate our previous results to simultaneously optimize for shape mesh and volume
mesh quality. As before, we show a way to calculate modified pre-shape gradi-
ents without the need for solving additional (non-)linear systems compared to
standard shape gradient calculations.

2.2.1. Suitable pre-shape spaces for hold-all mesh quality optimiza-

tion

Using pre-shape techniques to increase volume mesh quality is a different task
than regularizing the shape mesh as we have seen in Section 2.1. Using a pre-
shape space Emb(M,Rn+1) for this endeavor does not make sense, since this
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space contains all shapes in R
n+1 combined with their parameterizations. For

Emb(M,Rn+1), parameterizations are described via the n-dimensional modeling
or parameter manifold M . We now need a second, different parameter space
modeling the hold-all domain.

For this, let D ⊂ R
n+1 be a compact, orientable, path-connected, n + 1-

dimensional C∞-manifold. This hold-all domain will replace the unbounded
hold-all domain R

n+1 of our previous discussion. In most of numerical cases,
the hold-all domain has a non-empty boundary ∂D. Hence, we also permit non-
empty ∂D, but demand C∞-regularity of the boundary. We remind the reader
that D is a compact manifold with boundary, so we have to distinguish from its
interior, which we denote by int(D).

Remark 3 (Hölder Regularity Setting) The setting of C∞-smoothness
is taken, because it is necessary to have a meaningful definition of shape space
Bn

e . However, results concerning existence of optimal parameterizations ϕ for
eq. (9), its pre-shape derivative formula, eq. (6), regularization strategies fea-
turing the modified gradient system, eq. (13), and its consistency Theorem 1
all remain valid for the Hölder-regularity case Ck,α for k ≥ 0 and 1 > α > 0
(see Luft and Schulz, 2021, Remark 3). However, if D has Ck,α-regularity and
non-empty boundary, it is necessary to additionally assume Ck+3,α-regularity
for ∂D. If this is given, all previous and following results remain valid.

A first choice for a pre-shape space to the hold-all domain would be Emb∂D
(D,D), which is the set of all C∞-embeddings leaving ∂D pointwise invariant,
i.e.

Emb∂D(D,D) := {ϕ ∈ Emb(D,D) : ϕ(p) = p ∀p ∈ ∂D}. (21)

Leaving the outer boundary ∂D invariant can be beneficial from the practical
standpoint, since it might be a part of an underlying problem formulation.
Examples include Dirichlet-and-Neuman boundary conditions of stse equations,
which are given a priori on a fixed domain.

The pre-shape space, eq. (21), is in fact the diffeomorphism group Diff∂D(D)
leaving the boundary pointwise invariant. This is very important to notice,
because it means that Diff∂D(D) is a pre-shape space consisting exactly of one
fiber. The shape of hold-all domain D is fixed, and, as a consequence, its tangent
bundle T Diff∂D(D) consists of vector fields with vanishing normal components
on ∂D (see Smolentsev, 2007, Theorem 3.18), i.e.

TΦ Diff∂D(D) ∼= C∞
∂D(D,R

n+1) := {V ∈ C∞(D,Rn+1) : Tr|∂D(V ) = 0}

∀Φ ∈ Diff∂D(D). (22)

Here, Tr|∂D(V ) is the trace of V on ∂D. Even further, the structure theorem
for pre-shape derivatives, Luft and Schulz (2021), Theorem 1, tells us that a
pre-shape differentiable functional JD : Diff∂D(D) → R always has the trivial
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shape component gN = 0 of DJ. In particular, ordinary shape calculus is not
applicable for functionals of this type.

Our task is to design mesh regularization strategies, which are numerically
feasible and do not interfere with the original shape optimization problem. For
a given shape ϕ(M) ⊂ D, the latter is not guaranteed when a pre-shape space
Diff∂D is used to model parameterizations of the hold-all domain. A diffeomor-
phism Φ ∈ Diff∂D could change a given intermediate or optimal shape ϕ(M), i.e.
Φ
(

ϕ(M)
)

6= ϕ(M) in general. Therefore, we have to enforce the invariance of
shapes by further restricting the pre-shape space for D. For this, we use the con-
cept of diffeomorphism groups leaving submanifolds invariant (see Smolentsev,
2007, Chapter 3.6). With our previous notation, eq. (21), the final pre-shape
space is Diff∂D∪ϕ(M)(D), for a given fixed shape ϕ(M) ⊂ D. This space is a sub-
group of Diff∂D(D) and Diff(D), with a tangential bundle consisting of vector
fields vanishing both on ∂D and ϕ(M) (see Smolentsev, 2007, Theorem 3.18).

2.2.2. Volume parameterization tracking problem

with invariant shapes

Now we have a pre-shape space suitable to model reparameterizations of the
hold-all domain D, which can leave a given shape ϕ(M) invariant. Next, we
formulate an analogue of parameterization tracking problem, eq. (9), which
is tracking for the volume parameterization of the hold-all domain. Let us
fix a ϕ ∈ Emb(M,D) and the corresponding shape ϕ(M) ⊂ D. The volume
parameterization tracking problem is then

min
Φ∈Diff∂D∪ϕ(M)(D)

1

2

∫

D

(

gD◦Φ−1(x)·detDΦ−1(x)−fD

ϕ(M)(x)
)2

dx =: JD(Φ). (23)

Notice the similarities and differences with respect to the shape parame-
terization tracking problem of eq. (9). Both pre-shape functionals track for a
parameterization dictated by target f , and both feature a function g, describing
the initial parameterization. The volume tracking functional JD differs from Jτ

by featuring a volume integral, instead of a surface one. Also, the covariant
derivative of the Jacobian determinant in JD is just the regular Jacobian ma-
trix of Φ−1. The two most important differences concern their sets of feasible
solutions and targets f . The target fD

ϕ(M) does not depend on the pre-shape

Φ for the hold-all domain, but, instead, depends on the shape ϕ(M), which is
left to be invariant. Having fD depend on the shape of D does not make sense,
since Diff∂D∪ϕ(M)(D) consists only of one fiber, i.e. the shape of D remains
invariant. Hence, there is a dependence of both the feasible set of pre-shapes
Diff∂D∪ϕ(M)(D) and the target fD

ϕ(M) on the shape ϕ(M), because we desired

ϕ(M) to stay unaltered. For this reason, the volume parameterization tracking
problem, eq. (23), differs from eq. (9) to such an extent that Proposition 2 from
Luft and Schulz (2021) does not cover existence of solutions Φ ∈ Diff∂D∪ϕ(M)(D)
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for eq. (23). This makes it necessary to formulate a result guaranteeing the ex-
istence of solutions for eq. (23) under appropriate conditions.

Theorem 2 (Existence of Solutions for the Volume Parameteriza-
tion Tracking Problem) Assume D ⊂ R

n+1 to be a compact, orientable,
path-connected, n+1-dimensional C∞-manifold, possibly with boundary. Let M
be an n-dimensional, orientable, path-connected and compact C∞-submanifold
of D without boundary. Fix a ϕ ∈ Emb(M,D) generating a shape ϕ(M) ⊂ D.
Denote by D

in

ϕ and D
out

ϕ the disjoint inner and outer part of D partitioned by
ϕ(M).

Let gD : D → (0,∞) be a C∞-function and fD

ϕ(M) : D → (0,∞) be C∞-

regular on D \ ϕ(M). Further, assume the normalization conditions
∫

Din
ϕ

fD

ϕ(M)(x) dx =

∫

Din
ϕ

gD dx and

∫

Dout
ϕ

fD

ϕ(M)(x) dx =

∫

Dout
ϕ

gD dx. (24)

Then there exists a global C∞-solution to the problem of eq. (23), i.e. a
diffeomorphism Φ̃ ∈ Diff(D) satisfying

(gD◦Φ̃−1)·detDΦ̃−1 = fD

ϕ(M) on D\ϕ(M) and Φ̃(p) = p ∀p ∈ ∂D∪ϕ(M).

(25)

Proof Let the assumptions on D ⊂ R
n+1 and M ⊂ D be true. We fix a

ϕ ∈ Emb(M,D), and see that ϕ(M) ⊂ D is an n-dimensional, orientable, path-
connected and compact C∞-submanifold of D as well. With ϕ(M) being a
connected and compact hypersurface of D, the celebrated Jordan-Brouwer sepa-
ration theorem (see Guillemin and Pollack, 2010, p. 89) guarantees the existence
of open and disjoint inner Din

ϕ and outer Dout
ϕ of D separated by ϕ(M). Next, let

gD and fD

ϕ(M) be as described, in particular satisfying normalization conditions,

eq. (24). With existence of a separated inner and outer, we can decouple the
volume tracking problem, eq. (23), into two independent subproblems

min
Φin∈Diff

∂Din (D
in)

JD
in

(Φin) and min
Φout∈Diff∂Dout (D

out)
JD

out

(Φout). (26)

Both problems do not feature invariant submanifolds in the interior anymore,
since ∂Din

ϕ = ϕ(M) and ∂Dout
ϕ = ϕ(M)∪∂D. Thus, interior and exterior are both

C∞-manifolds with C∞-boundaries. With this, and two required normalization
conditions, eq. (24), we are in a position to apply the existence theorem Luft and
Schulz (2021), Proposition 2, for both independent subproblems, eq. (26). This

gives us two C∞-diffeomorphism Φ̃in ∈ Diff∂Din
ϕ
(Din

ϕ ) and Φ̃out ∈ Diff∂Dout
ϕ

(Dout
ϕ )

globally solving eq. (26), which, in particular, satisfy

(gD ◦ Φ̃−1
in ) · detDΦ̃−1

in = fD

ϕ(M) on D
in
ϕ

and

(gD ◦ Φ̃−1
out) · detDΦ̃−1

out = fD

ϕ(M) on D
out
ϕ . (27)
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We define a global solution candidate for eq. (23) by setting Φ̃ := Φ̃in+Φ̃out. It
is clear that Φ̃ is a bijection. Also, Φ̃ is the identity on ∂D∪ϕ(M), which is the

second property of eq. (25). We know that Φ̃in is C∞ on Din
ϕ and Φ̃out is C

∞ on

Dout
ϕ . With this, and Φ̃in = Φ̃out = 0 on ϕ(M), we get that Φ̃ has C∞ on the

entire hold-all domain D. In combination, this means that Φ̃ ∈ Diff∂D∪ϕ(M)(D).
Using section 2.2.2, we also get the first assertion of eq. (25). Finally, we can
use eq. (25) to see that JD(Φ̃) = 0, since ϕ(M) is a set of measure zero. Due to
quadratic nature of eq. (23) we have JD ≥ 0, which tells us that Φ̃ is a global
solution to the volume parameterization tracking problem. Since we did not use
any special property of ϕ, the argumentation holds for all ϕ ∈ Emb(M,D) and
concludes the proof. ✷

Remark 4 (Necessity of two normalization conditions for gD and
fD

ϕ(M)) For the guaranteed existence of optimal solutions Φ ∈ Diff∂D∪Γ(D) to

volume parameterization tracking, eq. (23), it is necessary to assume separate
normalization conditions, eq. (24). An invariant shape ϕ(M) ⊂ D acts as a
boundary, partitioning the hold-all domain into inner and outer. As we require
solutions Φ to leave ϕ(M) pointwise invariant, the diffeomorphism Φ is not
allowed to transport volume from outside to inside and vice versa. Hence, in
general, a single normalization condition on the entire hold-all domain D of
type eq. (3) is not sufficient for the existence of solutions. A direct application of
Dacorogna and Moser’s theorem (Dacorogna and Moser, 1990) to eq. (23) yields
a Φ ∈ Diff∂D(D) possibly transporting volume across ϕ(M), which we have to
restrict if ϕ(M) is left to be invariant. As the total inner and outer volume
is changing with varying ϕ(M), we have to require normalization condition,
eq. (24), for each ϕ(M) separately. For this reason our target fD

ϕ(M) has to

depend on ϕ(M), even though the shape of D stays the same. This has crucial
implications for the design of targets fD in numerical applications, which we
will discuss in Section 3.1.2.

Remark 5 (Generality of Invariant Shapes) In the existence result, The-
orem 2, we have required the invariant shape to be of the form ϕ(M) for some
ϕ ∈ Emb(M,D). This is solely due to the context of optimization problem,
eq. (1), using shape spaces Bn

e . It is absolutely possible to use any compact and
connected hypersurface Γ ⊂ D as an invariant shape for eq. (23). Existence of
Φ ∈ Diff∂D∪Γ(D) globally solving the volume parameterization tracking problem
is still guaranteed for general Γ.

As we want to regularize gradient descent methods for shape optimization, we
need to explicitly specify the pre-shape derivative to the volume parameteri-
zation tracking problem of eq. (23). However, it is also of theoretical interest,
since it serves as an example of a problem with a pre-shape derivative having
vanishing shape component. This means that neither the formulation of eq. (23)
in the context of classical shape optimization, nor the derivation of a derivative
using classical shape calculus are possible. Since the form of JD is similar to
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Jτ , we can mimic the steps from Luft and Schulz (2021), Theorem 2, which we
do not restate for brevity. Then, for given Φ ∈ Diff∂D∪ϕ(M)(D), the pre-shape

derivative of J D in decomposed form (see Luft and Schulz, 2021, Theorem 1) is
given by

DJD(Φ)[V ] = 〈gNΦ , V 〉+ 〈gTΦ , V 〉 ∀V ∈ C∞
∂D∪ϕ(M)(D,R

n+1), (28)

with normal/ shape component

〈gNΦ , V 〉 = 0 (29)

and tangential/ pre-shape component

〈gTΦ , V 〉 =−

∫

D

1

2
·
(

(

gD ◦ Φ−1 · detDΦ−1
)2
− fD

ϕ(M)

2
)

· div(V )

+
(

gD ◦ Φ−1 · detDΦ−1 − fD

ϕ(M)

)

·Dm

(

fD

ϕ(M)

)

[V ] dx.

(30)

Here, n is the outer unit normal vector field of the invariant submanifold ϕ(M).
As previously mentioned, we denote a duality pairing by 〈·, ·〉. It is also impor-
tant to see that the restriction of Diff(D) to Diff∂D∪ϕ(M)(D) does not influence

the form of pre-shape derivative DJD. Instead, it influences the space of ap-
plicable directions V by restricting C∞(D,Rn+1) to C∞

∂D∪ϕ(M)(D,R
n+1). This

stems from the relationship of tangential bundles of diffeomorphism groups with
invariant submanifolds, see Section 2.2.1. There is also another subtle differ-
ence between DJD and DJτ . Namely, the featured pre-shape material derivative
Dm

(

fD

ϕ(M)

)

depends on the invariant shape ϕ(M) ⊂ D instead of the volume
pre-shape Φ.

It is straightforward to formulate a pre-shape gradient system for DJD in the
style of Section 2.1 using Sobolev functions. For a symmetric, positive-definite
bilinear form a(., .) it takes the form

a(UJ
D

, V ) = αD ·DJD(Φ)[V ] ∀V ∈ H1
∂D∪ϕ(M)(D,R

n+1). (31)

Notice that the space of test functions enforces vanishing UJ
D

on ϕ(M). With

a pre-shape gradient UJ
D

, it is possible to optimize for the volume parameteri-
zation tracking problem, eq. (23), without altering the shape of ϕ(M).

2.2.3. Regularization of shape optimization problems by volume pa-

rameterization tracking

At this point, we have provided a suitable space Diff∂D∪ϕ(M)(D) for pre-shapes
representing the parameterization of hold-all domains D, which leave a given
shape ϕ(M) ⊂ D invariant. Also, we are able to guarantee the existence for
global minimizers to the volume version of the parameterization tracking prob-
lem of eq. (23) for all shapes ϕ(M). In this subsection we are going to in-
corporate the volume mesh quality regularization simultaneously with shape
optimization and shape mesh quality regularization.
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To formulate a regularized version of the original shape optimization prob-
lem, eq. (1), we have to keep the different types of pre-shapes involved in mind.
These pre-shapes ϕ ∈ Emb(M,D) and Φ ∈ Diff∂D∪ϕ(M)(D) correspond to com-
pletely different shapes ϕ(M) and D. This is also illustrated by looking at the
pre-shapes as maps

ϕ : M → D and Φ : D→ D. (32)

For this reason, we cannot simply proceed by adding JD in the style of a reg-
ularizer to increase volume mesh quality. From the viewpoint of problem for-
mulation, this signifies a main difference in application of shape mesh quality
regularization via Jτ and volume mesh quality regularization JD. To avoid this
issue, we formulate the volume and shape mesh regularized shape optimization
problem using a bi-level approach. We have already seen in Remark 2 that
simultaneous shape parameterization tracking and shape optimization can be
put into the bi-level framework. In fact, this was seen to be equivalent to the
added regularizer approach, eq. (9), with regard to gradient systems.

Let us consider weights αD, ατ > 0. Then we formulate the simultaneous
volume and shape mesh regularization of shape optimization problem, eq. (1),
as

min
Φ∈Diff∂D∪ϕ(M)(D)

αD · JD(Φ)

s.t. ϕ = argmin
ϕ∈Emb(M,D)

(

J ◦ π
)

(ϕ) + ατ · Jτ (ϕ).
(33)

Of course, the bi-level problem of eq. (33) can be formulated for αD = 1 with-
out loss of generality. To stay coherent with Section 2.1 regarding the pre-shape
gradient systems, which feature weighted force terms, we prefer to formulate
eq. (33) with a factor αD > 0. Notice that the regularization of shape opti-
mization problem of eq. (1) needs to use its pre-shape extension, eq. (2). This is
necessary in order to rigorously apply the pre-shape regularization strategies. In
contrast to eq. (9) and eq. (17), the simultaneous volume and shape mesh qual-
ity regularized problem of eq. (33) is not minimizing for one pre-shape, but for
two different pre-shapes ϕ ∈ Emb(M,D) and Φ ∈ Diff∂D∪ϕ(M)(D). The lower
level problem solves for a pre-shape corresponding to the actual parameterized
shape solving the shape mesh regularized optimization problem of eq. (9). On
the other hand, the upper level problem looks for a pre-shape corresponding
to the parameterization of the hold-all domain D with specified volume mesh
quality. The set of feasible solutions Diff∂D∪ϕ(M)(D) to the upper level problem
depends on the lower level problem, because the optimal shape for the latter is
required to stay invariant.

Remark 6 (Volume Mesh Quality Regularization) It is of course pos-
sible to regularize a shape optimization problem of eq. (1) for volume mesh qual-
ity only, neglecting shape mesh parameterization tracking. In this scenario, the



490 D. Luft and V. Schulz

regularized problem takes the bi-level formulation

min
Φ∈Diff∂D∪Γ(D)

αD · JD(Φ)

s.t. Γ = argmin
Γ∈Bn

e

J (Γ).
(34)

Here, it is not necessary to use the pre-shape expansion, eq. (2), of the original
shape optimization problem.

In the remainder of this section we propose a regularized gradient system
for simultaneous volume- and shape mesh quality optimization during shape op-
timization, and prove a corresponding existence and consistency result for the
fully regularized problem. As done in Section 2.1, we change the space of direc-
tions from C∞ toH1, as it is more suitable for numerical application. We remind
the reader that the pre-shape derivative DJD(Φ)[V ] is defined only for directions
V ∈ H1

∂D∪ϕ(M)(D,R
n+1) which vanish on ∂D∪ϕ(M). This is inevitable, since a

criterion for successful application of volume mesh regularization for shape op-
timization routines has to leave optimal or intermediate shapes ϕ(M) invariant.
If DJD(Φ)[V ] was used for regularizing the gradient in the style of an added
source term (cf. eq. (13)) for general directions V ∈ H1(D,Rn+1), it would
most certainly alter shapes and interfere with shape optimization. Also, it is
not possible to put Dirichlet conditions on ϕ(M), or to use a restricted space of
test function as in eq. (31). Doing so would prohibit shape optimization itself.
Hence, we have to modify DJD, so that the general directions V ∈ H1(D,Rn+1)
are applicable as test functions, while the shape at hand is preserved. To resolve
this problem, we introduce a projection

PrH1
∂D∪ϕ(M)

: H1 → H1
∂D∪ϕ(M), (35)

which is required to be the identity on H1
∂D∪ϕ(M). Since we permit the general

operators projecting a given direction V ∈ H1 onto H1
∂D∪ϕ(M), we do not need

to specify PrH1
∂D∪ϕ(M)

. Suitable options include the projection via solution of a

least squares problem

PrH1
∂D∪ϕ(M)

(V ) := argmin
W∈H1

∂D∪ϕ(M)

1

2
‖W − V ‖2H1 . (36)

In practice, it is feasible to construct a projection, eq. (35), by using a finite
element representation of V and setting coefficients of basis functions on the
discretization of ϕ(M) to zero. With this projection operator, we can extend
the volume tracking pre-shape derivative DJD to the space H1

∂D∪ϕ(M) by using

DJD(Φ)[PrH1
∂D∪ϕ(M)

(·)] : H1(D,Rn+1)→ R, V → DJD(Φ)[PrH1
∂D∪ϕ(M)

(V )], (37)

with DJD as in eq. (28).
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Now we can formulate the fully regularized pre-shape gradient system for
simultaneous volume-, shape mesh quality and shape optimization. We motivate
the combined gradient system with the same formal calculations as in the bi-
level formulation for shape quality regularization Remark 2, which are inspired
by Savard and Gauvin (1994). Given a symmetric, positive-definite bilinear
form a(., .), the gradient system takes the form

a(U, V ) = DJ (Γ)[V ] + ατ · 〈gTϕ , V 〉 + αD ·DJD(Φ)[PrH1
∂D∪ϕ(M)

(V )]

∀V ∈ H1(D,Rn+1), (38)

where gTϕ is the tangential component of shape regularization, Section 2.1.1,
and DJ (Γ) is the shape derivative of the original shape objective with Γ =
π(ϕ). Notice that the fully regularized pre-shape gradient system, Section 2.2.3,
looks similar to the shape gradient system, eq. (11), of the original problem,
differing only by two added force terms on the right hand side. These force
terms can be thought of as regularizing terms with respect to the original shape
gradient. In practice, this means that simultaneous volume and shape mesh
quality improvement for shape optimization amounts to adding two terms on
the right hand side of the gradient system. Hence, they can also be viewed as a
(pre-)shape gradient regularization by added force terms.

Theorem 3 (Volume and Shape Regularized Problems) Let shape op-
timization problem of eq. (1) be shape differentiable and have a minimizer Γ ∈
Bn

e . For shape and volume parameterization tracking, let the assumptions of
both Theorem 1 and Theorem 2 be true.

Then there exists a ϕ ∈ π(ϕ) = Γ ⊂ Emb(M,D) and a Φ ∈ Diff∂D∪ϕ(M)(D)
minimizing the volume and shape regularized bi-level problem eq. (33).

The fully regularized pre-shape gradient U from the system of Section 2.2.3
is consistent with the modified shape regularized gradient Ũ from the system of

eq. (13) and volume tracking pre-shape gradient UJ
D

from the system of eq. (10),
in the sense that

U = 0 ⇐⇒ Ũ = 0 and UJ
D

= 0. (39)

In particular, if U = 0 is satisfied, the necessary first order conditions for volume
tracking, eq. (23), shape tracking, eq. (9), and the original problem, eq. (1), are
all satisfied simultaneously.

Proof For the proof, we need to guarantee the existence of solutions to eq. (33),
consistency of gradients of eq. (39) and conclude the last assertion concerning
the necessary first order conditions.

First, let the assumptions of Theorem 3 be given. This includes all assump-
tions made on M , D and functions gM , gD, fϕ, f

D

ϕ(M) summarized in Theorem 1

and Theorem 2. Fix a solution Γ ∈ Bn
e to the original problem of eq. (1). With

the theorem for shape regularized problems, Theorem 1, we have guaranteed
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existence of a solution ϕ ∈ π(ϕ) = Γ ⊂ Emb(M,D) to the lower level problem
of eq. (33), which coincides with the shape regularized problem, eq. (9). Let
us select such a solution ϕ ∈ Emb(M,D). This fixes the set of solution candi-
dates Diff∂D∪ϕ(M)(D). The existence theorem for volume tracking with invariant
shapes, Theorem 2, gives the existence of a pre-shape Φ ∈ Diff∂D∪ϕ(M)(D) solv-
ing the upper level problem of eq. (33) while leaving ϕ(M) invariant. This
proves the existence of solutions to the volume and shape regularized bi-level
problem of eq. (33).

For consistency of pre-shape gradients of eq. (39), we first prove ’⇒’ by
assuming U = 0. The right hand side of the volume and shape regularized
gradient system of Section 2.2.3 consists of three added functionals DJ (Γ),
gTϕ and DJD(Φ)[PrH1

∂D∪ϕ(M)
(·)]. Due to U = 0, the full right hand side of

eq. (39) vanishes, in particular, for all directions V ∈ H1
∂D∪ϕ(M)(D,R

n+1) ⊂

H1(D,Rn+1). Our functionals DJ (Γ) and gTϕ are only supported on direc-
tions V not vanishing on ϕ(M) due to the structure theorem for pre-shape
derivatives (see Luft and Schulz, 2021, Theorem 1) and their underlying pre-
shape space being Emb(M,D). This implies vanishing of DJD(Φ)[PrH1

∂D∪ϕ(M)
(·)]

for all V ∈ H1
∂D∪ϕ(M)(D,R

n+1), which in turn gives a vanishing right hand

side for eq. (31) and UJ
D

= 0. This also means that individually considered
DJD(Φ)[PrH1

∂D∪ϕ(M)
(·)] vanishes for all directions V ∈ H1(D,Rn+1). Thus, the

remaining part DJ (Γ) + ατ · 〈gTϕ , ·〉 vanishes for all V ∈ H1(D,Rn+1) as well,

which immediately gives us Ũ = 0 by eq. (13).

For ’⇐’, let us assume Ũ = UJ
D

= 0. Since Ũ vanishes, we see from eq. (13)
that DJ (Γ) + ατ · 〈gTϕ , ·〉 has to vanish too for all V ∈ H1(D,Rn+1). And as

DJD vanishes for all V ∈ H1
∂D∪ϕ(M), considering the projection operator gives

that DJD(Φ)[PrH1
∂D∪ϕ(M)

(·)] vanishes for all V ∈ H1(D,Rn+1). Together, this

means that the complete right hand side of Section 2.2.3 vanishes, which gives
us U = 0 and establishes consistency of eq. (39).

The last assertion, concerning necessary optimality conditions for volume
tracking, eq. (23), shape tracking, eq. (9), and the original problem, eq. (1), is a

consequence of consistency of eq. (39). If U = 0, we immediately get UJ
D

= 0,
which implies the necessary first order condition for volume tracking via eq. (31).
Consistency of eq. (39) and vanishing U = 0 also give Ũ = 0. The last part of
the main theorem, Theorem 1, for shape regularized problems, then tells us that
the necessary first order conditions for shape tracking, eq. (9), and the original
problem, eq. (1), are satisfied as well. ✷

The theorem for volume and shape regularized problems, Theorem 3, is of
great importance, since it guarantees the existence of solutions to the regularized
problem of eq. (33) for a given shape optimization problem. It also tells us that
the shape Γ, solving the original problem of eq. (1), remains unchanged by the
volume and shape regularization. This is due to two invariance properties. For
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one, it stems from the guaranteed existence of a minimizing pre-shape ϕ in the
fiber π(ϕ), corresponding to the optimal shape Γ. And secondly, the optimal
pre-shape Φ, representing the parameterization of the hold-all domain D, comes
from Diff∂D∪ϕ(M)(D), which means it leaves the optimal shape ϕ(M) pointwise
invariant. Furthermore, Theorem 3 justifies the use of pre-shape gradient system
Section 2.2.3 modified by the force terms for volume and shape regularization.
This gives a practical and straightforward applicability of volume and shape
regularization strategies in shape optimization problems.

Remark 7 (Numerical Feasibility) Our second criterion for a good regu-
larization strategy also holds. Calculation of a regularized gradient via Section
2.2.3 is numerically feasible, since it does not require additional solving of (non-
)linear systems if compared to the standard shape gradient system of eq. (11).
In fact, the volume and shape regularized pre-shape gradient is a combination of
three gradients

U = UJ + UT + UJ
D

, (40)

coming from the original problem of eq. (11), modified shape tracking of eq. (20)
and volume tracking of eq. (31). Instead of solving three systems separately,
our approach permits a combined solution of only one linear system with ex-
actly the same size of the gradient system, eq. (11), to the original problem.
Together with invariance of the optimal shape, both criteria for a satisfactory
mesh regularization technique are achieved.

Remark 8 (Applicability of Volume and Shape Regularization for
General Shape Optimization Problems) We want to remind the reader
that there is no need for the original shape optimization problem of eq. (1) to
have a specific structure. It solely needs to be shape differentiable and to have a
solution in order to successfully apply volume and shape regularization. Exactly
the same assertions as made in Remark 1 for shape regularization are also true
for simultaneous volume and shape regularization.

Remark 9 (Volume Regularization without Shape Regularization)
As mentioned in Remark 6, it is of course possible to apply volume mesh reg-
ularization without shape regularization. A result similar to Theorem 3 can be
formulated for the volume regularized problem of eq. (34) by the following analo-
gous arguments. In particular, the volume regularized pre-shape gradient system
takes the form

a(UJ+J
D

, V ) = DJ (Γ)[V ] + αD ·DJD(Φ)[PrH1
∂D∪ϕ(M)

(V )] ∀V ∈ H1(D,Rn+1).

(41)

Also, the corresponding consistency of gradients is given by

UJ+J
D

= 0 ⇐⇒ UJ = 0 and UJ
D

= 0, (42)
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for pre-shape gradients UJ of the original problem of eq. (11) and UJ
D

volume

tracking problem of eq. (31). If UJ+J
D

= 0, then the necessary first order
conditions for eq.(1) and eq.(2) are both satisfied.

3. Implementation of methods

The theoretical results of shape and volume regularization for shape optimiza-
tion problems, given in Sections 2.1 and 2.1, were presented in an abstract
setting, where the objects involved remained general. In this section, we give an
example, which displays the regularization approaches for mesh quality in prac-
tice. The abstract systems and functionals will be stated explicitly, so that the
user can apply regularization by referencing the exemplary problem as a guide-
line. In Section 3.2 we elaborate the process of regularizing a model problem.
We also propose an additional modification for simultaneous shape and volume
regularization, which allows for the movement of the boundary of the hold-all
domain ∂D to increase mesh quality. Thereafter, we present numerical results
in Section 3.2, comparing several (un-)regularized optimization approaches. To
be more specific, we test two bilinear forms and four regularizations of gradi-
ents for a standard gradient descent algorithm with a backtracking line search.
The two bilinear forms are given by the linear elasticity as found in Schulz,
Siebenborn and Welker (2016) and the p-Laplacian, inspired by Müller et al.
(2021) and studies found in Deckelnick, Herbert and Hinze (2021). Different
gradients tested will be the unregularized, shape regularized, shape and volume
regularized, and shape and volume regularized with varying outer boundary.

3.1. Model problem and application of pre-shape mesh quality re-

gularization

3.1.1. Model problem formulation and regularization

In this section we formulate a model problem to test our pre-shape regularization
strategies. For this, we choose a tracking type shape optimization problem in
two dimensions, constrained by a Poisson equation with varying source term. To
highlight the difference of shape and pre-shape calculus techniques, we formulate
and test the model problem in two ways. First, we use the classical shape space
framework. The second reformulation uses the pre-shape setting, where pre-
shape parameterization tracking regularizers can be added.

To start, we set the model manifold for shapes and the hold-all domain to

M = S0.35
(0.5,0.5) and D = [0, 1]× [0, 2.35]. (43)

The model manifold M ⊂ D is a sphere with radius 0.35, centered in (0.5, 0.5),
consisting of 63 surface nodes and edges. It is embedded in the hold-all domain
D, which is given by a rectangle [0, 1]× [0, 2.35] with non-trivial boundary ∂D.
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Figure 1: Hold-all domain D = D
in ∪ Dout with initial circular shape M and

target shape Γtarg

The hold-all domain D consists of 1402 nodes and has 741 volume cells. They
are illustrated in Fig.1. This problem is not easy for standard shape gradient
descents, because obtaining of solution requires a large deformation at a single
local region of the initial shape. Since the mesh is locally refined near the shape,
the nearby cells are especially prone to degeneration by large deformations.

Notice that the manifold M acts as an initial shape for the optimization
routines at the start. This approach is always applicable, i.e. the manifold M
for the pre-shape space Emb(M,D) can always be picked as the initial shape.
With this, the corresponding starting pre-shape is the identity idM of M .

For the shape optimization problem, we employ a piecewise constant source
term varying depending on the shape

rϕ(M)(x) =

{

r1 ∈ R for x ∈ Dout

r2 ∈ R for x ∈ D
in.

(44)

A perimeter regularization with parameter ν > 0 is added as well. Combining
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this, the optimization problem takes the form

min
Γ∈Bn

e

1

2

∫

D

|y − ȳ|2 dx+ ν

∫

Γ

1 ds

s.t. −∆y = rΓ in int(D)

y = 0 on ∂D.

(45)

To calculate the target ȳ ∈ H1(D) of the shape problem, we use the source
term of eq. (44) and solve the Poisson problem for the target shape, pictured
in Fig. 1. The problem of eq. (45) is formulated using the classical shape space
approach, since the control variable Γ is stemming from the shape space Bn

e ,
and represents eq. (1) from the theoretical Section 2.

Next, we reformulate eq. (45) using pre-shapes, while we also add the regu-
larizing term Jτ for shape mesh quality with parameter ατ > 0

min
ϕ∈Emb(M,D)

1

2

∫

D

|y − ȳ|2 dx+ ν

∫

ϕ(M)

1 ds

+
ατ

2

∫

ϕ(M)

(

gM ◦ ϕ−1(s) · detDτϕ−1(s)− fϕ(s)
)2

ds

s.t. −∆y = rϕ(M) in D (46)

y = 0 on ∂D.

We remind the reader that the regularizer can only be added in the pre-shape
context, since it is not shape differentiable.

Technically, the combined volume and shape mesh quality regularized prob-
lem is given by formulating a bi-level problem with volume regularizing objective
JD as the upper level problem and lower level problem, Section 3.1.1, i.e.

min
Φ∈Diff∂D∪ϕ(M)(D)

αD

2

∫

D

(

gD ◦ Φ−1(x) · detDΦ−1(x)− fD

ϕ(M)(x)
)2

dx

s.t. ϕ = argmin
ϕ∈Emb(M,D)

1

2

∫

D

|y − ȳ|2 dx+ ν

∫

ϕ(M)

1 ds

+
ατ

2

∫

ϕ(M)

(

gM ◦ ϕ−1(s) · detDτϕ−1(s)− fϕ(s)
)2

ds

s.t. −∆y = rϕ(M) in D (47)

y = 0 on ∂D.

We also remind the reader that, despite its intimidating form, the bi-level prob-
lem of Section 3.1.1 has guaranteed existence of solutions by Theorem 3. The
same is true for the shape regularized problem of Section 3.1.1 by Theorem 1.
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3.1.2. Constructing initial and target node densities f and g

To explicitly construct the regularizing terms, we need initial node densities
gM ∈ H1(M, (0,∞)) ofM and gD ∈ H1(D, (0,∞)) of D. Also, we need to specify
target node densities fϕ and fD

ϕ(M), which describe the cell volume structure of

optimal meshes representing ϕ(M) and D.

The approach used in this work is to represent the initial point distributions
gM and gD by using the continuous Galerkin Ansatz with linear elements, similar
to Luft and Schulz (2021), Chapter 3. Degrees of freedom are situated at the
mesh vertices and set to the average of inverses of surrounding cell volumes, i.e.

g(p) =
1

|C|
·
∑

C∈C

1

vol(C)
. (48)

In the shape case of g = gM , a vertex p is a part of the initial discretized shape
M and C is the set of its neighboring cells C in M . For 1-dimensional M , the
cells C correspond to edges, and for 2-dimensional M , they correspond to faces.
In the volume mesh case g = gD, p is a vertex of the initial discretized hold-all
domain D and C is the set of its neighboring volume cells C in D.

Next, we specify a way to construct target parameterizations fϕ and fD

ϕ(M),
together with their pre-shape material derivatives. We define a target for shape
parameterization tracking fϕ by a global target field q : D→ (0,∞). In order to
satisfy the normalization condition of eq. (3), which is necessary for the existence
of solutions and stable algorithms, a normalization is included. This gives

fϕ =

∫

M
gM ds

∫

ϕ(M)
q|ϕ(M) ds

· q|ϕ(M). (49)

With this construction, the targeted parameterization of ϕ(M) depends on its
location and shape in D, as q : D → (0,∞) is allowed to vary on the whole
domain.

The corresponding material derivative is derived in Luft and Schulz (2021)
and has the closed form

Dm(fϕ)[V ] =

−

∫

M
gM ds

( ∫

ϕ(M)
q ds

)2 · q ·

∫

ϕ(M)

( ∂q

∂n
+ dim(M) · κ · q

)

· 〈V, n〉 ds

+

∫

M
gM ds

∫

ϕ(M)
q ds

· ∇qTV, (50)

where κ = dim(M)−1 · divΓ(n) is the mean curvature according to Lee (2009),
Definition 4.23. Notice that Section 2.2.3 includes both normal and tangential
components. However, only its tangential component is needed if regularized
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gradient systems of eq. (13) and Section 2.2.3, are applied. We will write down
the explicit right hand sides to gradient systems for our exemplary problem in
Section 3.1.2.

For a volume target fD

ϕ(M), we have to satisfy the different normalization

condition, eq. (24), to guarantee the existence of solutions. We propose to use a
field qD : D→ (0,∞), defined on the hold-all domain. Then, the corresponding
target can be defined as

fD

ϕ(M) =















∫
Dinϕ

gD dx
∫
Dinϕ

qD dx
· qD for x ∈ D

in
ϕ

∫
Doutϕ

gD dx
∫
Doutϕ

qD dx
· qD for x ∈ Dout

ϕ .

(51)

This is different to the construction of targets fϕ for embedded shapes, since
the function fD

ϕ(M) does only change in order to guarantee the normalization

condition of eq. (24). It cannot vary due to the change of shape of D, which
remains fixed. This stays in contrast to the situation for ϕ(M) ⊂ D, which can
change its position in D. Also notice that fD

ϕ(M), as defined in eq. (51), can

be non-continuous on the shape ϕ(M). However, in existence and consistency
results of Theorems 2 and 3 we have not demanded continuity or smoothness of
fD

ϕ(M) on the entire domain D. Smoothness of fD

ϕ(M) is only demanded for the

inner Din
ϕ and outer Dout

ϕ partitioned by ϕ(M).

Now, we derive the pre-shape material derivative Dm(fD

ϕ(M))[V ] for direc-

tions H1
∂D. These directions are not forced to vanish on the shape ϕ(M), which

is needed to assemble the combined gradient systems with V acting as test func-
tions. This poses a difficulty in its derivation, the partitioning depending on
the pre-shape ϕ ∈ Emb(M,D), but not on Φ ∈ Diff∂D∪ϕ(M)(D). Let us fix a
ϕ ∈ Emb(M,D) and compute on the outer domain D

out
ϕ with pre-shape calculus

rules from Luft and Schulz (2021). In this computation we write D
out instead

of Dout
ϕ for readability.

Dm(fD

ϕ(M))[V ]|Dout = Dm

(

∫

Dout g
D dx

∫

Dout qD dx
· qD

)

[V ]

=
qD

∫

Dout qD dx
·

∫

Dout

(

D(gD)[V ] +∇(gD)TV + div(V ) · gD
)

dx

−

∫

Dout g
D dx

( ∫

Dout qD dx
)2 · q

D ·

∫

Dout

(

D(qD)[V ] +∇(qD)TV + div(V ) · qD
)

dx

+

∫

Dout g
D dx

∫

Dout qD dx
·
(

D(qD)[V ] +∇(qD)TV
)
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=
qD

∫

Dout qD dx
·

∫

Dout

div
(

gD · V
)

dx

−

∫

Dout g
D dx

( ∫

Dout qD dx
)2 · q

D ·

∫

Dout

div
(

qD · V
)

dx

+

∫

Dout g
D dx

∫

Dout qD dx
· ∇(qD)TV

=
qD

∫

Dout qD dx
·

∫

∂D∪ϕ(M)

(

gD −

∫

Dout g
D dx

∫

Dout qD dx
· qD
)

·
〈

V, nDout

〉

ds

+

∫

Dout g
D dx

∫

Dout qD dx
· ∇(qD)TV

= −
qD

∫

Dout qD dx
·

∫

ϕ(M)

(

gD −

∫

Dout g
D dx

∫

Dout qD dx
· qD
)

·
〈

V, nϕ(M)

〉

ds

+

∫

Dout g
D dx

∫

Dout qD dx
· ∇(qD)TV. (52)

Here, nDout is the outer unit normal vector field on ∂Dout = ∂D ∪ ϕ(M), and
nϕ(M) is the outer unit normal vector field on ϕ(M). In particular, we used

the fact that gD and qD do neither depend on Φ nor on ϕ, which lets their
pre-shape derivatives vanish. Also, we have applied Gauss’ theorem and used
V∂D = 0. Notice the change of sign for the first summand of the last equality,
due to nDout = −nϕ(M) on ϕ(M). Analogous computation on the interior D

in

with boundary ∂Din = ϕ(M) gives us the pre-shape material derivative

Dm(fD

ϕ(M))[V ] =































qD∫
Din

qD dx
·
∫

ϕ(M)

(

gD −
∫
Din

gD dx∫
Din

qD dx
· qD
)

·
〈

V, nϕ(M)

〉

ds

+
∫
Din

gD dx∫
Din

qD dx
· ∇(qD)TV for x ∈ D

in

− qD∫
Dout

qD dx
·
∫

ϕ(M)

(

gD −
∫
Dout

gD dx∫
Dout

qD dx
· qD
)

·
〈

V, nϕ(M)

〉

ds

+
∫
Dout

gD dx∫
Dout

qD dx
· ∇(qD)TV for x ∈ Dout.

(53)

This pre-shape material derivative is interesting from a theoretical perspec-
tive, since it is an example of a derivative depending on the shape of a submani-
fold ϕ(M) ⊂ D, where the actual pre-shape at hand D is of different dimension.
Also, we see that the sign of boundary integral on ϕ(M) depends on whether
the inside or outside of D is considered. This nicely reflects the fact that chang-
ing ϕ(M) adds volume on the one side and takes it away from the other. We
remind the reader that normal directions nϕ(M) are not the normal directions
corresponding to the shape of D. They rather lie in the interior of D, and hence
are part of the fiber or tangential component of Diff(D) = Emb(D,D).
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3.1.3. Pre-shape gradient systems

To compute pre-shape gradients U we need suitable forms a(., .). The systems
for our gradients are always of the prototype form

a(U, V ) = RHS(ϕ,Φ)[V ] ∀H1
∂D(D,R

n+1)

U = BC on ∂D.
(54)

In our numerical implementations, we test two bilinear forms and four differ-
ent right hand sides. We abbreviate the right hand sides by RHS(ϕ,Φ)[V ], de-
pending on pre-shapes ϕ ∈ Emb(M,D),Φ ∈ Diff∂D∪ϕ(M)(D) and test functions
V , and boundary conditions by BC. First, we consider the weak formulation of
the linear elasticity equation with zero first Lamé parameter as found in Schulz
and Siebenborn (2016)

∫

D

µ · ǫ(U) : ǫ(V ) dx = RHS(ϕ,Φ)[V ] ∀V ∈ H1
0 (D,R

n+1)

ǫ(U) =
1

2
(∇UT +∇U)

ǫ(V ) =
1

2
(∇V T +∇V )

U = 0 on ∂D.

(55)

As the second bilinear form, we consider the weak formulation of the vector
valued p-Laplacian equation. Since the systems, stemming from the p-Laplacian
have the issue of being indefinite, we employ a standard regularization by adding
a parameter ε > 0. To make a comparison with the linear elasticity of eq. (55)
viable, we use a local weighting µ : D→ (0,∞) in the bilinear form, which is

∫

D

µ ·
(

ε2+∇U : ∇U
)

p
2−1

·∇U : ∇V dx = RHS(ϕ,Φ)[V ] ∀V ∈ H1
0 (D,R

n+1).

(56)

We chose the local weighting µ as the solution of the Poisson problem

−∆µ = 0 in D

µ = µmax on ϕ(M)

µ = µmin on ∂D

(57)

for µmax, µmin > 0. In the context of linear elasticity, eq. (55), it can be inter-
preted as the so-called second Lamé parameter.

Remark 10 (Sufficiency of Linear Elements for Pre-Shape Regu-
larization) In order to apply the pre-shape regularization approaches, pre-
sented in this work, it is completely sufficient to use continuous linear elements
to represent the involved functions. As we can see in the pre-shape derivative
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formulas of Section 2.1.1 and eq. (30), the highest order of featured derivatives
is one. This is important for application in practice, since the existing shape
gradient systems do not require higher order elements for volume and shape
mesh quality tracking. In particular, all following systems are built by using
continuous first order elements in FEniCS.

Next, we need the shape derivative of the PDE constrained tracking type
shape optimization objective J . It can be derived by a Lagrangian approach
using standard shape or pre-shape calculus rules, giving

DJ (π(ϕ))[V ] =
∫

D

−(y − ȳ)∇ȳTV −∇yT (∇V T +∇V )∇p

+div(V )
(1

2
(y − ȳ)2 +∇yT∇p− rϕ(M)p

)

dx. (58)

Here, p is the adjoint solving the adjoint system

−∆p = −(y − ȳ) in D

p = 0 on ∂D.
(59)

It is straightforward to derive the shape derivative of the perimeter regulariza-
tion J Perim, which takes the form

DJ Perim(π(ϕ))[V ] =

∫

ϕ(M)

divΓ(V ) ds, (60)

where divΓ(V ) is the tangential divergence of V on ϕ(M).

In the following, we give four right hand sides, representing various (un-)
regularized approaches to calculate pre-shape gradients. They correspond to
unregularized shape gradient, shape parameterization tracking regularized pre-
shape gradient, volume and parameterization tracking regularized pre-shape
gradient, and volume and parameterization tracking regularized pre-shape gra-
dient with free tangential outer boundary.

For the unregularized shape gradient, the right hand side of the gradient
system of eq. (54) takes the standard form

RHS(ϕ,Φ)[V ] = DJ (π(ϕ))[V ] + ν · DJ Perim(π(ϕ))[V ]

=

∫

D

−(y − ȳ)∇ȳTV −∇yT (∇V T +∇V )∇p+

+ div(V )
(1

2
(y − ȳ)2 +∇yT∇p− rϕ(M)p

)

dx

+ ν ·

∫

ϕ(M)

divΓ(V ) ds ∀V ∈ H1
∂D(D,R

n+1).

(61)
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In this case, the respective boundary condition for the gradient system is simply
a Dirichlet zero condition, BC = 0.

Next, we give the right hand side for the shape parameterization regularized
pre-shape gradient. For shape parameterization tracking, we employ a target
fϕ, given by a globally defined function q : D→ (0,∞) (cf. eq. (49)), which, in
combination, yields

RHS(ϕ,Φ)[V ] = DJ (π(ϕ))[V ] + ν · DJ Perim(π(ϕ))[V ] + ατ · 〈gTϕ , V 〉

=

∫

D

−(y − ȳ)∇ȳTV −∇yT (∇V T +∇V )∇p

+div(V )
(1

2
(y − ȳ)2 +∇yT∇p− rϕ(M)p

)

dx+ ν ·

∫

ϕ(M)

divΓ(V ) ds

−ατ ·

∫

ϕ(M)

1

2
·

(

(

gM ◦ ϕ−1 · detDτϕ−1
)2
−
(

∫

M
gM ds

∫

ϕ(M)
q ds

· q
)2
)

·

· divΓ(V − 〈V, n〉 · n)

+
(

gM ◦ ϕ−1 · detDτϕ−1 −

∫

M
gMds

∫

ϕ(M)
qds
· q
)

·

∫

M
gMds

∫

ϕ(M)
qds
· ∇Γq

TV ds (62)

∀V ∈ H1
∂D(D,R

n+1).

The boundary condition is Dirichlet zero, BC = 0. In order to assemble the
shape regularization 〈gTϕ , V 〉, it is necessary to compute the tangential Jacobian
detDτϕ−1. In applications, this means that storing the vertex coordinates
of the initial shape is necessary. Then, ϕ−1 can be calculated simply as the
difference of current shape node coordinates with respect to the initial ones.
Hence, there is no need to invert matrices to calculate Dτϕ−1. We give a strong
reminder that Dτ is the covariant derivative, and must not be confused with the
tangential derivative (see Luft and Schulz, 2021, Example 2). In the case of an n-
dimensional manifold ϕ(M), the covariant derivative is an n×n-matrix, whereas
the tangential derivative is (n + 1) × (n + 1). The use of covariant derivatives
requires the calculation of the local orthonormal frames, which can be done
by the standard Gram-Schmidt algorithms. Knowing this, the computation of
Jacobian determinants is inexpensive, since matrices from applications are of
size smaller, 3× 3.

Building on Section 3.1.3, we can construct the right hand side for the shape
and volume parameterization regularized pre-shape gradient. For this, we use
a volume tracking target fD

ϕ(M), defined by a field qD : D → (0,∞) (eq. (51)).
This finally gives

RHS(ϕ,Φ)[V ] =

DJ (π(ϕ))[V ] + ν · DJ Perim(π(ϕ))[V ] + ατ · 〈gTϕ , V 〉+ αD ·DJD(Φ)[V ]
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=

∫

D

−(y − ȳ)∇ȳTV −∇yT (∇V T +∇V )∇p

+div(V )
(1

2
(y − ȳ)2 +∇yT∇p− rϕ(M)p

)

dx+ ν ·

∫

ϕ(M)

divΓ(V ) ds

−ατ ·

∫

ϕ(M)

1

2
·

(

(

gM ◦ ϕ−1 · detDτϕ−1
)2
−
(

∫

M
gMds

∫

ϕ(M)
qds
· q
)2
)

· divΓ(V − 〈V, n〉 · n)

+
(

gM ◦ ϕ−1 · detDτϕ−1 −

∫

M
gM ds

∫

ϕ(M)
q ds

· q
)

·

∫

M
gM ds

∫

ϕ(M)
q ds

· ∇Γq
TV ds

−αD ·

∫

Dout

1

2
·

(

(

gD ◦ Φ−1 · detDΦ−1
)2
−
(

∫

Dout g
D ◦ Φ−1 · detDΦ−1 dx
∫

Dout qD dx
· qD
)2
)

· div(PrH1
∂D∪ϕ(M)

(V ))

+

(

gD ◦ Φ−1 · detDΦ−1 −

∫

Dout g
D ◦ Φ−1 · detDΦ−1 dx
∫

Dout qD dx
· qD

)

·

∫

Dout g
D ◦ Φ−1 · detDΦ−1dx
∫

Dout qDdx
· ∇(qD)T PrH1

∂D∪ϕ(M)
(V )dx

−αD ·

∫

Din

1

2
·

(

(

gD ◦ Φ−1 · detDΦ−1
)2
−
(

∫

Din g
D ◦ Φ−1 · detDΦ−1 dx
∫

Din qD dx
· qD
)2
)

· div(PrH1
∂D∪ϕ(M)

(V ))

+

(

gD ◦ Φ−1 · detDΦ−1−

∫

Din g
D ◦ Φ−1 · detDΦ−1 dx
∫

Din qD dx
· qD

)

·

∫

Din g
D ◦ Φ−1 · detDΦ−1 dx
∫

Din qD dx
· ∇(qD)T PrH1

∂D∪ϕ(M)
(V ) dx (63)

∀V ∈ H1
∂D(D,R

n+1).

The last two integrals correspond to the regularizer for volume parameteri-
zation tracking. As in previous cases, the corresponding Dirichlet condition is
given by BC = 0. All previous remarks on assembling the right hand side are
still valid. Additionally, it is necessary to store the coordinates of the entire ini-
tial hold-all domain. With these, the volume pre-shape Φ−1 can be calculated
as the difference of initial and current coordinates of the volume mesh. For
volume regularization, calculation of Jacobian determinants detDΦ−1 does not
require local orthonormal frames via Gram-Schmidt algorithms, as no covariant
derivatives are used. It is very important to use a correct normalization for qD

in order to ensure existence of solutions. This is necessary, since in practical
applications an optimization step leads to a change of the underlying shape, and
thus of the inner and outer components of D. Hence, it is not enough to simply
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estimate gD once in the beginning. Either gD needs to be estimated by eq. (48)
in every iteration, for which the shape of ϕ(M) changes, or gD is replaced by
gD ◦ Φ−1 · detDΦ−1, which is motivated by the transformation rule. We have
decided for the latter, which can be seen in the last two terms of Section 3.1.3.
This also needs to be taken into account when calculating JD, e.g. for line
search. As explained in Section 2.2.3, it is necessary to use PrH1

∂D∪ϕ(M)
(V ) as

directions for the volume regularization, if shapes are enforced to stay invariant.
The projection can be realized by setting the degrees of freedom of the finite
element representation of V to zero on the shape ϕ(M). This leads to vanishing
of the first term of D(fD

ϕ(M))[V ] (cf. eq. (53)), which does not occur in Section
3.1.3.

Lastly, the right hand side for a volume and parameterization tracking regu-
larized pre-shape gradient with free tangential outer boundary is given by Section
3.1.3 as well. However, instead of employing Dirichlet zero boundary conditions,
we permit the boundary ∂D to move tangentially. For this, we set

BCΦ = α∂D · UL2 on ∂D, (64)

for a scaling factor α∂D > 0. Here, UL2 is the L2-representation of tangential
components of DJD(Φ), i.e

∫

∂D

〈UL2 , V 〉 ds = DJD(Φ)[V − 〈V, n∂D〉 · V ] ∀V ∈ L2(∂D,Rn+1). (65)

Notice that, in practice, this does not require solution of a PDE on ∂D, since
the tangential values of DJD(Φ) can be extracted directly from its finite element
representation. We remind the reader that this is more of a heuristic approach,
which we will refine in further works.

3.2. Numerical results and comparison of algorithms

In this subsection we explore computational results of employing unregularized
and various pre-shape regularized gradient descents for the shape optimization
problem of eq. (45). We propose an Algorithm 1, which is a modified gradient
descent method with a backtracking line search featuring regularized gradients.
We present seven implementations of pre-shape gradient descent methods. The
first four feature the linear elasticity metric of eq. (55) with unregularized, shape
regularized, volume and shape regularized, and volume and shape regularized
free tangential outer boundary right hand sides. The other three feature the
regularized p-Laplacian metric of eq. (56) with unregularized, shape regular-
ized, volume and shape regularized right hand sides. For the p-Laplacian metric
we dismiss the free tangential outer boundary regularization, since solving it
requires a modified Newton’s method and slightly complicates our approach.
Both the linear elasticity metric of eq. (55) and the regularized p-Laplacian
metric of eq. (56) involve a local weighting function µ, stemming from eq. (57),
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inspired by Schulz and Siebenborn (2016). The two approaches for these met-
rics without any type of pre-shape regularization are denoted as their ’Vanilla’
versions. For implementations we use the open-source finite-element software
FEniCS (see Logg et al., 2012; Alnaes et al., 2015). Construction of meshes is
done via the free meshing software Gmsh (see Geuzaine and Remacle, 2009).
We perform our calculations using a single Intel(R) Core(TM) i5-3210M CPU
@ 2.50GHz featuring 6 GB of RAM.

Algorithm 1 is essentially a steepest descent algorithm with a backtracking
line search. The regularization procedures for shape and volume mesh quality
take place by modifying the right hand sides as described in Section 3.1.3. How-
ever, we want to pinpoint some important differences of Algorithm 1, compared
to a standard gradient descent for shape optimization. First, notice that the
initial mesh coordinates are stored in order to calculate ϕ−1

k and Φ−1
k . This

corresponds to setting initial pre-shapes Φ0 = idD0
and ϕ0 = idM . Since the

current mesh coordinates are necessarily stored in a standard gradient descent,
ϕ−1
k and Φ−1

k are calculated as mesh coordinate differences. Calculating these
inverse embeddings amounts to a matrix difference operation, and therefore is
of negligible computational burden. Estimating initial vertex distributions gM

and gD needs to be done only once at the beginning of our routine. Hence, it
does not contribute to computational cost in a significant way. If shape regular-
ization is partaking in the gradient system, it is necessary to compute and store
local tangential orthonormal frames of the initial shape τ0. Together with cal-
culation of local tangential orthonormal frames τk for the current shape ϕk(M),
these are used to assemble the covariant Jacobian determinant for the regular-
ized right-hand side of the gradient systems. Since this needs to be done for
each new iterate ϕk, it indeed increases computational cost. If required, this
can be mitigated by parallel computing, since tangential orthonormal bases can
be calculated simultaneously for all points p ∈ ϕk(M).

Another difference with respect to standard steepest descent methods con-
cerns the condition of convergence in line 6 of Algorithm 1. It features two
conditions, namely sufficient decrease in either the absolute or relative norm of
the pre-shape gradient, and sufficient decrease of relative values for the original
shape objective J . We use this approach, since several objective functionals
participate simultaneously in formation of pre-shape gradients Uk. If shape or
volume regularization take place, they influence the size of gradients depending
on the mesh quality. In order to compare different (un-)regularized gradient
systems, we use this criterion to guarantee the same decrease of the original
problem’s objective for all strategies. For the same reason, the line search
checks for a sufficient decrease of the combined objective functionals, matching
the gradient regularizations. In some sense, this is a weighted descent for multi
criterial optimization, where the objectives are J and regularizations Jτ and
JD.

Furthermore, we mention the difference of our two tested metrics a(., .), act-
ing as left hand sides. The linear elasticity metric of eq. (55) leads to a linear
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system, which is solvable by the use of standard techniques such as the CG-
method. It is reported in Müller et al. (2021), that the p-Laplacian metric has
particular advantages in the resolution of sharp edges or kinks of optimal shapes.
Illustration of this is not the goal of this paper. However, the p-Laplacian sys-
tem of eq. (56) is increasingly non-linear for larger p ≥ 2. This significantly
increases the computational cost and the burden of implementation, since New-
ton’s method requires multiple linear system solutions. Also, systems are pos-
sibly indefinite if the regularization parameter ε > 0 is too small. If chosen too
large, we pay for positive definiteness by overregularizing the gradient systems.
In order to achieve convergence of Newton’s method for the p-Laplacian, we use
gradients from the previous shape optimization step as an initial guess.

Remark 11 (Integrating Shape and Volume Regularization in Ex-
isting Solvers) Implementing shape and volume regularization with the pre-
shape approach does not require a big overhead, if an existing solver for the shape
optimization problem of concern is available. It solely requires accessibility of
gradient systems of eq. (54) and mesh morphing to update meshes and shapes.
With this, adding regularization terms in the style of eq. (62) or eq. (63) to
existing right hand sides is all that needs to be done. This does not affect the
user’s choice of the preferred metrics a(., .) to represent gradients. We highlight
this by implementing and comparing our regularizations for the linear elasticity
and the non-linear p-Laplacian metrics. From this perspective, Algorithm 1 is
only an in-depth explanation of how right-hand side modifications of the gradient
systems are assembled.

For a meaningful comparison of the seven mentioned approaches, we use the
same parameters for the problem throughout. Parameters for the source term
rϕ(M) of the PDE constraint in eq. (59) are chosen as r1 = −1000 and r2 = 1000.
The scaling factor for perimeter regularization is ν = 0.00001. Parameters for
calculating local weightings µ via eq. (57) are µmax = 1 and µmin = 0.05 for
all approaches. The stopping criteria for all routines tested remain the same.
Specifically, the tolerance for relative decrease of gradient norms is εrel = 0.001,
absolute decrease of gradient norms is εabs = 0.00001, and relative main objec-
tive decrease εJrel = 0.0005. If shape regularization is employed, it is weighted
with ατ = 1000 and uses a constant target of q ≡ 1. This targets a uniform
distribution of surface cell volume of shapes. For volume regularization, the
weighting is αD = 100 with the constant qD ≡ 1 targeting uniform volume cells
of the hold-all domain. If we permit free tangential movement of the outer
boundary, eq. (64), we choose a weighting parameter α∂D = 250. In the case of
the p-Laplacian metric, we chose the parameter p = 6. Its regularization param-
eter is chosen as ε = 8 for the unregularized, and shape and volume regularized
routines. If shape mesh regularization without volume mesh regularization takes
place, we had to increase regularization to ε = 9.5. This was necessary, since at
some point lower values for ε resulted in indefinite systems during descent with
p-Laplacian gradients.



Simultaneous shape and mesh quality optimization using pre-shape calculus 507

1 Set starting domain D0 and shape ϕ0(M) and save according vertex
coordinates for future computations

2 Choose pre-shape regularizations by setting ατ , αD ≥ 0

3 Set shape and volume targets q, qD : D→ (0,∞)

4 Estimate initial infinitesimal point distributions gM for ϕ0(M) and gD

for D0 according to eq. (48)
5 Calculate local orthonormal tangential bases τ0(p) for each vertex of

p ∈ ϕ0(M) using Gram-Schmidt orthonormalization, and save them
for future iterations

6 While
(

‖Uk‖ > εabs and ‖Uk‖
‖U0‖

> εrel

)

or J (π(ϕk))
J (π(ϕ0))

> εJrel do:

7 Assemble right-hand-side of pre-shape gradient system eq. (54):
8 solve for state solution yk via eq. (45)
9 solve for adjoint solution pk via eq. (59)

10 Calculate local orthonormal tangential bases τϕk for each vertex
of ϕk(M) with same orientation as τ0 using Gram-Schmidt
orthonormalization

11 if ατ = 0, αD = 0: Assemble RHS(ϕk,Φk) according to
eq. (61)

12 elif ατ 6= 0, αD = 0: Assemble RHS(ϕk,Φk) according to
section 3.1.3

13 elif ατ 6= 0, αD 6= 0: Assemble RHS(ϕk,Φk) according to
section 3.1.3

14 Solve for pre-shape gradient Uk:
15 Calculate local weighting parameters µ by solving eq. (57)
16 if linear elasticity:
17 Assemble left-hand-side a(., .) by eq. (55) and solve by

preconditioned CG-method
18 elif p-Laplacian:
19 Use preconditioned Newton’s method to solve eq. (54) with

left-hand-side a(., .) by eq. (56)

20 Perform a linesearch to get a sufficient descent direction Ũk:

21 Ũk ←
1

‖Uk‖
· Uk

22 while

J (π(ϕk+ Ũk ◦ϕk))+ατ ·Jτ (ϕk+ Ũk ◦ϕk)+αD ·JD(Φk+ Ũk ◦Φk)
23 ≥ J (π(ϕk)) + ατ · Jτ (ϕk) + ατ · JD(Φk) do:

24 Ũk ← 0.5 · Ũk

25 Perform updates:

26 ϕk+1 ← ϕk + Ũk ◦ ϕk

27 Φk+1 ← Φk + Ũk ◦ Φk

Algorithm 1: Simultaneous shape and volume regularized shape opti-
mization
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LE
Vanilla

LE
Tang

LE
VolTang

LE
VolTang
Free

p-L
Vanilla

p-L
Tang

p-L
VolTang

total time 49.0s 345.4s 199.9s 320.7s 135.4s 316.5s 325.8s

avg. time
step

1.2s 2.5s 2.6s 2.8s 2.4s 2.0s 4.6s

number of
steps

41 137 77 114 55 155 70

Table 1: Total times, averaged times per step and number of steps for all seven
methods (for uniform stopping criteria see in the respective text)

We compare relative values of J , Jτ and JD, which are illustrated in Fig. 3.
Here, Jτ is interpretable as the deviation of the shape mesh from a surface mesh
with equidistant edges. Similarly, JD can be understood as the deviation of the
volume mesh from a volume mesh with uniform cell volumes. Since a change
of mesh coordinates leads to different qualities of finite element solutions to the
PDE constraint of eq. (45), the regularizations do affect the original objective
J . Hence, we also measure distance of shapes ϕk(M) and the target shape by
a Hadamard like distance function

dist(ϕk(M), N) :=

∫

ϕk(M)

max
p∈N

‖s− p‖ ds. (66)

This gives us a geometric value for convergence of our algorithms, complement-
ing the value of objective functionals for our results.

Figure 2: Initial mesh D = [0, 1] × [0, 2.35] with embedded initial shape M =
S0.35
(0.5,0.5). The bottle like target shape is included as well
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From Fig. 3 (a) and (b), we see that all seven methods are converging. They
all minimize the original shape objective J , and the geometric mesh distance
to the target shape (see Fig. 2). Seeing that mesh distance is minimized for all
methods confirms that the optimal shape of the original problem of eq. (45) is
left invariant by our pre-shape regularizations. Also, convergence to the opti-
mal shape is not affected by the choice of regularization and metric a(., .). In
Fig. 3 (a) we also see that, given a fixed metric a(., .), the values of the origi-
nal target J for regularized routines vary only slightly from the unregularized
one. This means that intermediate shapes ϕk(M) are left nearly invariant by
all regularization approaches as well. We witness that the p-Laplacian metric
eq. (56) gives a pre-shape gradient with slightly slower convergence if compared
to the linear elasticity of eq. (55) for unregularized and all regularized variants.
However, one should keep in mind that the shapes considered here have rather
smooth boundary. Notice that all gradients are normed in the line search of
Algorithm 1, which permits this comparison.

In Table 1 we present the times for all optimization runs. We see that the
fastest method in both time and step count featured the unregularized approach
with the linear elasticity metric. Regularized approaches all need more steps for
convergence, since the convergence condition features sufficient minimization
of the gradient norms. As shape and volume tracking objectives Jτ and JD

participate in this condition, the optimization routine continues to optimize for
mesh quality, despite the sufficient reduction of the original target J . This
can be verified in Fig. 3. Notice that additional volume regularization did not
considerably increase the average computational time per step for the linear
elasticity approach. The times for approaches featuring shape regularization
can be improved by computing tangential orthonormal bases in parallel. We
relied on a rather inefficient but convenient calculation of these, solving several
projection problems using FEniCS.

From Table 1, we see that the unregularized p-Laplacian approach for p = 6
needs more steps to convergence compared to a linear elasticity gradient. Av-
erage time per step is higher too, since Newton’s method needs to be applied
to solve the non-linear gradient system. This approach requires careful selec-
tion of the regularization parameter ε > 0 for eq. (56), since the mesh quality
degrades quickly for our problem. This makes calculation of gradients by New-
ton’s method difficult, since conditioning of systems and indefiniteness at some
point of the shape optimization routine are an issue. Computational times
were slighty faster onaverage for the shape regularized p-Laplacian gradient de-
scent compared to the unregularized p-Laplacian one. We ascribe this to faster
convergence of the Newton method, since we needed to employ a higher reg-
ularization parameter ε for the shape regularized routine. This also explains
longer computational times for the volume regularized p-Laplacian, since the
same regularization parameter ε as in the unregularized approach is permissi-
ble, but more Newton iterations are necessary. Since the shape regularization
takes place simultaneously with volume regularization, a lower permissible reg-
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ularization ε indeed shows that volume regularization improves the condition of
linear systems.

(a) relative shape objective value J (π(ϕi))
J (π(ϕ0))

(b) mesh distance of ϕi(M) and target
shape

(c) relative shape tracking value J
τ (ϕi)

Jτ (ϕ0)
(d) relative volume tracking value J

D(Φi)

JD(Φ0)

Figure 3: Relative values for three objective functionals J , Jτ and JD and mesh
distance to target shape for gradient descents using 7 different (un-)regularized
pre-shape gradients and metrics

Notice that the final shapes for all volume regularized routines, i.e. those seen
in Fig. 5 (c) and (d), and Fig. 8 (c), are slightly non-symmetric, even though
the initial and final shapes in Fig. 2 are symmetric. Because the volume mesh
for the hold-all domain is generated in an unstructured way by Gmsh, its cells
are not mirror symmetric with respect to the (0.5, y)-axis. As all regularizations
do not alter the node connectivity, while trying to achieve uniform cell volume
distribution, a slight non-symmetry of final iterates is produced due to the initial
non-symmetry of the unstructured volume mesh topology.

To analyze the quality of the shape mesh for all routines, we provide the
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relative value of the shape parameterization tracking target Jτ in Fig. 3 (c), as
well as gM ◦ϕ−1

k ◦detD
τϕ−1

k for final shapes in Figs. 5 and 8. The relative value
of the shape parameterization tracking target Jτ in Fig. 3 (c) measures deviation
of the current shape mesh ϕk(M) from a uniform surface mesh. This means
that larger values indicate more pronounced non-uniformity of shape meshes.
The colors in Fig. 5 and Fig. 8 highlight variation of node densities on the
shape meshes, where a uniform color indicates approximately equidistant surface
nodes. As the starting mesh, seen in Fig. 2, is constructed via Gmsh, it features
an approximately uniform surface mesh. However, both for unregularized linear
elasticity and p-Laplacian approaches, we see in Fig. 3 (c) that Jτ increases
during optimization. This means that surface mesh quality deteriorates if no
regularization takes place. For final shapes, this is visualized in Fig. 5 (a) and
Fig. 8 (a). There we clearly see an expansion of cell volumes for the targeted
bump at the top. All other routines involve a shape quality regularization by
Jτ . In Fig. 3 (c) it is visible that also for these routines, the deviation Jτ

from the uniform surface meshes increases initially. Once surface mesh quality
becomes sufficiently bad, the shape parameterization takes effect and corrects
quality until approximate uniformity is achieved. We can clearly see this by the
convergence of Jτ for all shape regularized methods in Fig. 3 (c). Also, we see
an approximately uniform color of gM ◦ϕ−1

k ◦detD
τϕ−1

k for final shapes in Fig.
5 and Fig. 8 , which indicates a nearly equidistant surface mesh. As a caveat,
we see in Fig. 4 (b) and in Fig. 7 (c) that shape without volume regularization
decreases the quality of the surrounding volume mesh. This happens, since
surface vertices are transported from areas with low volume at the bottom to
areas with high volume at the top. In case no volume regularization takes
place, node coordinates from the hold-all domain are not corrected for this
change. Nevertheless, if a remeshing strategy is employed for shape optimization
including shape regularization, the improved surface mesh quality leads to a
superior remeshed domain. Such routines are an interesting subject for further
study.

In Fig. 3 (d) the relative values of the volume parameterization tracking
functional JD are depicted for each routine and step. We interpret these values
as a measure for non-uniformity of the volume mesh D. The local density of
volume vertices gD ◦ Φ−1 ◦ detDΦ−1 are visualizing this, and are depicted in
Figs. 4 and 7. For pictures zoomed at the upper tip of final shapes, we refer the
reader to Figs. 6 and 9. From Fig. 3 (d) we see that, both for linear elasticity
and p-Laplacian metrics, non-volume regularized approaches have significantly
higher value of JD. Values even increase for the p-Laplacian metric, while there
is a slight decrease for the linear elasticity. Notice that the initial mesh is
locally refined near the shape M , which naturally increases the initial value
of JD for a uniform target. As already discussed, we see in Fig. 3 (d) that
the shape regularized approaches reduce the quality of the volume mesh even
further, compared to unregularized approaches. The decrease of mesh quality
is especially visible in the zoomed pictures of Figs. 6 and 9 (a) and (b). We see
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(a) Linear elasticity without regulariza-
tion

(b) Linear elasticity with tangential pa-
rameterization tracking

(c) Linear elasticity with tangential and
volume parameterization tracking

(d) Linear elasticity with tangential and
free outer boundary volume parameteri-
zation tracking

Figure 4: Complete meshes of final steps of linear elasticity approaches. Color
depicts the value of gD ◦Φ−1 ·detDΦ−1, to be interpreted as the density of allo-
cated volume mesh vertices. Its reciprocal gives the averaged local cell volume.
A more constant value corresponds to better volume mesh quality by uniformity



Simultaneous shape and mesh quality optimization using pre-shape calculus 513

(a) Linear elasticity without regulariza-
tion

(b) Linear elasticity with tangential pa-
rameterization tracking

(c) Linear elasticity with tangential and
volume parameterization tracking

(d) Linear elasticity with tangential and
free outer boundary volume parameteri-
zation tracking

Figure 5: Shape meshes of final steps of linear elasticity approaches. Color
depicts the value of gM ◦ ϕ−1 · detDτϕ−1, to be interpreted as the density
of allocated shape mesh vertices. Its reciprocal gives the averaged local edge
length. A more constant value corresponds to better shape mesh quality by
uniformity
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that for these approaches, volume cells near the shape are compressed to such
an extent that their volumes nearly vanish. Also, the cell volume distribution
for unregularized and shape regularized approaches varies dramatically, which
can be seen in Figs. 4 and 7 (a) and (b). If volume regularization JD is applied,
we see in Fig. 3 (d) that convergence for JD takes place independently of the
metric a(., .) being used. This is apparent when looking at the volume mesh
quality in Fig. 4 (c) and (d) and Fig. 7 (c).

Further, notice that in Fig. 6 and (d) and in Fig. 9 (c) the severe compression
of cells neighboring the top of the final shapes is avoided. Volume cells inside
the neck of final shapes are still more or less compressed for all approaches. The
interior cell volume cannot be transported through the shape, as it is forced to
stay invariant. Since the mesh topology is not changed during the optimization
routine, there is also a limited possibility to redistribute the cell volumes inside
the shape. This situation could be remedied by the cell fusion, edge swapping
or remeshing strategies, which is beyond the scope of this article. Finally, we
want to highlight the difference of volume regularizations with and without free
tangential outer boundary ∂D. If Fig. 4 (c) and (d) are compared, we see that
the nodes on the outer boundary ∂D changed position for routine (d). Indeed,
the cell volume distribution is more uniform for free outer boundary routine (d),
this being visualized by less variation of color. This leads to an even further
increase of volume mesh quality, which can be pinpointed in Fig. 3 (d).

4. Conclusion and outlook

In this work, we have provided several approaches to regularize general shape
optimization problems with the aim to increase shape and volume mesh qual-
ity using pre-shape calculus. Existence of regularized solutions and consistency
of modified pre-shape gradient systems is guaranteed by several results for si-
multaneous shape and volume tracking. With the presented gradient system
modifications, our goal of leaving optimal shapes for the original problem in-
variant was achieved. The computational burden is limited, since no additional
solution of linear systems for regularized pre-shape gradients is necessary. We
also successfully implemented and compared our pre-shape gradient regulariza-
tion approaches for linear elasticity and non-linear p-Laplacian metrics.

There are several possibilities for the further development of pre-shape reg-
ularization approaches. For one, non-constant targets f can be designed to
adapt mesh refinement non-uniformly. In particular, mesh quality targets in-
creasing solution quality of PDE constraints can be envisioned. Also, we did not
touch the topic of pre-shape Hessian, which could be of use to further increase
the effectiveness of regularization approaches. Furthermore, combinations with
discrete techniques, such as remeshing and edge swapping are possible as well.
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(a) Linear elasticity without regulariza-
tion

(b) Linear elasticity with tangential pa-
rameterization tracking

(c) Linear elasticity with tangential and
volume parameterization tracking

(d) Linear elasticity with tangential and
free outer boundary volume parameteri-
zation tracking

Figure 6: Zoom of the meshes of final steps of linear elasticity approaches at
the top bulge of the shape. Color depicts the value of gD ◦ Φ−1 · detDΦ−1, to
be interpreted as the density of allocated volume mesh vertices. Its reciprocal
gives the averaged local cell volume. A more constant value corresponds to
better volume mesh quality by uniformity
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(a) p-Laplacian without regularization (b) p-Laplacian with tangential parameter-
ization tracking

(c) p-Laplacian with tangential and volume
parameterization tracking

Figure 7: Complete meshes of final steps of p-Laplacian approaches. Color
depicts the value of gD ◦Φ−1 ·detDΦ−1, to be interpreted as the density of allo-
cated volume mesh vertices. Its reciprocal gives the averaged local cell volume.
A more constant value corresponds to better volume mesh quality by uniformity
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(a) p-Laplacian without regularization (b) p-Laplacian with tangential parameter-
ization tracking

(c) p-Laplacian with tangential and volume
parameterization tracking

Figure 8: Shape meshes of final steps of p-Laplacian approaches. Color depicts
the value of gM ◦ ϕ−1 · detDτϕ−1, to be interpreted as the density of allocated
shape mesh vertices. Its reciprocal gives the averaged local edge length. A more
constant value corresponds to better shape mesh quality by uniformity
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(a) p-Laplacian without regularization (b) p-Laplacian with tangential parameter-
ization tracking

(c) p-Laplacian with tangential and volume
parameterization tracking

Figure 9: Zoom of the meshes of final steps of p-Laplacian approaches at the
top bulge of the shape. Color depicts the value of gD ◦ Φ−1 · detDΦ−1, to
be interpreted as the density of allocated volume mesh vertices. Its reciprocal
gives the averaged local cell volume. A more constant value corresponds to
better volume mesh quality by uniformity
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