PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern approach to sustainable production in the context of Industry 4.0

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reviewing the current state of knowledge on sustainable production, this paper opens the Special Section entitled “Sustainability in production in the context of Industry 4.0”. The fourth industrial revolution (Industry 4.0), which embodies a vision for the future system of manufacturing (production), focuses on how to use contemporary methods (i.e. computerization, robotization, automation, new business models, etc.) to integrate all manufacturing industry systems to achieve sustainability. The idea was introduced in 2011 by the German government to promote automation in manufacturing. This paper shows the state of the art in the application of modern methods in sustainable manufacturing in the context of Industry 4.0. The authors review the past and current state of knowledge in this regard and describe the known limitations, directions for further research, and industrial applications of the most promising ideas and technologies.
Rocznik
Strony
art. no. e143828
Opis fizyczny
Bibliogr. 65 poz., tab.
Twórcy
  • Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland
autor
  • Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland
  • Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland
  • Environmental Engineering Faculty, Lublin University of Technology, 20-618 Lublin, Poland
  • EFREI Paris Pantheon Assas University, 30-32 Avenue de la République, 94800, Villejuif, France
Bibliografia
  • [1] C. Santos, A. Mehrsai, A.C. Barros, M. Araújo, and E. Ares, “Towards Industry 4.0: an overview of European strategic roadmaps,” Procedia Manuf., vol. 13, pp. 972–979, 2017, doi: 10.1016/j.promfg.2017.09.093.
  • [2] S. Sierla et al., “Roadmap to semi-automatic generation of digital twins for brownfield process plants,” J. Ind. Inf. Integr., vol. 27, p. 100282, 2022, doi: 10.1016/j.jii.2021.100282.
  • [3] G. Luz Tortorella, F.S. Fogliatto, P.A. Cauchick-Miguel, S. Kurnia, and D. Jurburg, “Integration of Industry 4.0 technologies into Total Productive Maintenance practices,” Int. J. Prod. Econ., vol. 240, p. 108224, 2021, doi: 10.1016/j.ijpe.2021.108224.
  • [4] H. Han and S. Trimi, “Towards a data science platform for improving SME collaboration through Industry 4.0 technologies,” Technol. Forecast. Soc. Chang., vol. 174, p. 121242, 2022, doi: 10.1016/j.techfore.2021.121242.
  • [5] C. Marnewick and A. Marnewick, “Digital intelligence: A must-have for project managers,” Project Leadersh. Soc., vol. 2, p. 100026, 2021, doi: 10.1016/j.plas.2021.100026.
  • [6] M. Sony, J. Antony, O. McDermott, and J.A. Garza-Reyes, “An empirical examination of benefits, challenges, and critical success factors of industry 4.0 in manufacturing and service sector,” Technol. Soc., vol. 67, p. 101754, 2021, doi: 10.1016/j.techsoc. 2021.101754.
  • [7] N. Dahmani, K. Benhida, A. Belhadi, S. Kamble, S. Elfezazi, S. Kumar Jauhar, “Smart circular product design strategies towards eco-effective production systems: A lean eco-design industry 4.0 framework,” J. Cleaner Prod., vol. 320, p. 128847, 2021, doi: 10.1016/j.jclepro.2021.128847.
  • [8] C. Chauhan, V. Parida, and A. Dhir, “Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises,” Technol. Forecast. Soc. Chang., vol. 177, p. 121508, 2022, doi: 10.1016/j.techfore. 2022.121508.
  • [9] L. Silvestri, T. Gallo, and C. Silvestri, “Which tools are needed to implement Lean Production in an Industry 4.0 environment? A literature review,” Procedia Comput. Sci., vol. 200, pp. 1766–1777, 2022, doi: 10.1016/j.procs.2022.01.377.
  • [10] M. Sharma, S. Luthra, S. Joshi, A. Kumar, J.A. Garza-Reyes, and V. Kumar, “Managing Disruptive Industry 4.0 Technologies to Enhance Circular Performance Outcomes: An Emerging Economy Perspective,” SSRN, Preprint, 2022, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127737183&partnerID=40&md5=9e25d4d798262f7704d79b4ca541e0af.
  • [11] E. Topuz, “Integration of ecotoxicity assessment with product design for circularity management,” Integr. Environ. Assess. Manag., vol. 18, iss. 2, pp. 305–307, 2022, doi: 10.1002/ ieam.4580.
  • [12] M.H. Naseem and J. Yang, “Role of Industry 4.0 in Supply Chains Sustainability: A Systematic Literature Review,” Sustainability, vol. 13, p. 9544, 2021, doi: 10.3390/su13179544.
  • [13] I.S. Khan, M.O. Ahmad, and J. Majava, “Industry 4.0 and sustainable development: A systematic mapping of triple bottom line, Circular Economy and Sustainable Business Models perspectives,” J. Cleaner Prod., vol. 297, p. 126655, 2021, doi: 10.1016/j.jclepro.2021.126655.
  • [14] Ch. Bai, P. Dallasega, G. Orzes, and J. Sarkis, “Industry 4.0 technologies assessment: A sustainability perspective,” Int. J. Prod. Econ., vol. 229, 107776, 2020, doi: 10.1016/j.ijpe.2020.107776.
  • [15] C. Gonçalves Machado, M.P. Winroth, and E.H. Dener Ribeiro da Silva, “Sustainable manufacturing in Industry 4.0: an emerging research agenda,” Int. J. Prod. Res., vol. 58, no. 5, pp. 1462–1484, 2020, doi: 10.1080/00207543.2019.1652777.
  • [16] H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for Implementing the Strategic Initiative Industrie 4.0,” Final Report of the Industrie 4.0 WG, 2013. [Online]. Available: https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-forimplementing-industry-4-0-data.pdf.
  • [17] National Research Council, The Role of Technology in Environmentally Sustainable Development, Washington, DC: The National Academies Press, 1995, doi: 10.17226/9236.
  • [18] Emerging green technologies for the manufacturing sector. United Nations Industrial Development Organization, Vienna, 2014. [Online]. Available: https://www.unido.org/sites/default/files/2015-01/Institute_Emerging_green_trends_Future_of_Manufacturing_0.pdf.
  • [19] M. Vacchi, C. Siligardi, F. Demaria, E.I. Cedillo-González, R. González-Sánchez, and D. Settembre-Blundo, “Technological Sustainability or Sustainable Technology? A Multidimensional Vision of Sustainability in Manufacturing,” Sustainability, vol. 13, p. 9942, 2021, doi: 10.3390/su13179942.
  • [20] M. Rüßmann et al., Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries, The Boston Consulting Group, 2015, [Online]. Available: https://www.bcg.com/publications/2015/engineered_products_project_business _industry_4_future_productivity_growth_manufacturing_industries [Accessed: 13 Dec. 2021].
  • [21] V. Veleva and M. Ellenbecker, “Indicators of Sustainable Production: Framework and Methodology,” J. Cleaner Prod., vol. 9, pp. 519–549, 2001, doi: 10.1016/S0959-6526(01)00010-5.
  • [22] A. Gunasekaranand, A. Spalanzani, “Sustainability of Manufacturing and Services: Investigations for Research and Applications,” Int. J. Prod. Econ., vol. 140, no. 1, pp. 35–47, 2012, doi: 10.1016/j.ijpe.2011.05.011.
  • [23] J. Bonvoisin, R. Stark, and G. Seliger, “Field of Research in Sustainable Manufacturing,” in Sustainable Manufacturing: Challenges, Solutions and Implementation, R. Stark, G. Seliger, J. Bonvoisin, Eds., Cham: Springer International Publishing. Sustainable Production, Life Cycle Engineering and Management, 2017, doi: 10.1007/978-3-319-48514-0.
  • [24] EPA. Sustainable Manufacturing. 2018, [Online]. Available: https://www.epa.gov/sustainability/sustainable-manufacturing [Access: 26 Dec. 2021].
  • [25] A. Pawłowski, M. Pawłowska, and L. Pawłowski, “Mitigation of Greenhouse Gases Emissions by Management of Terrestrial Ecosystem,” Ecol. Chem. Eng. S, vol. 24, no. 2, pp. 213–221, 2017, doi: 10.1515/eces-2017-0014.
  • [26] L. Pawłowski, “How Heavy Metals Affect Sustainable Development,” Rocznik Ochrona Srodowiska, vol. 13, no. 1, pp. 51–64, 2011.
  • [27] T. Stock and G. Seliger, “Opportunities of Sustainable Manufacturing in Industry 4.0,” Procedia CIRP, vol. 40, pp. 536–541, 2016, doi: 10.1016/j.procir.2016.01.129.
  • [28] D.J. Kiel, C.A. Muller, and K.-I. Voigt, “Sustainable Industrial Value Creation: Benefits and Challenges of Industry 4.0,” Int. J. Innov. Manag., vol. 21, no. 8, p. 1740015, 2017, doi: 10.1142/ S1363919617400151.
  • [29] Teknikföretagen, Made in Sweden 2030 – Strategic Agenda for Innovation in Production, 2017, [Online]. Available: http://www.teknikforetagen.se/globalassets/idebatten/publikationer/produktion/made-in-sweden-2030-engelsk.pdf. [Accessed: 27 Dec. 2021].
  • [30] M.W. Waibel, L.P. Steenkamp, N. Moloko, and G.A. Oosthuizen, “Investigating the Effects of Smart Production Systems on Sustainability Elements,” Procedia Manuf., vol. 8, pp. 731–737, 2017, doi: 10.1016/j.promfg.2017.02.094.
  • [31] S. Duarte and V. Cruz-Machado, “Exploring linkages between lean and green supply chain and the Industry 4.0,” in Proc. 11th Int. Conf. Management Science and Engineering Management, 2017, pp. 1242–1252.
  • [32] G. Seliger, Sustainability in Manufacturing, Berlin: Springer Berlin, 2007, doi: 10.1007/978-3-319-29306-6.
  • [33] F. Jovane et al., “The Incoming Global Technological and Industrial Revolution Towards Competitive Sustainable Manufacturing,” CIRP Ann-Manuf. Technol., vol. 57, no. 2, pp. 641–659, 2008, doi: 10.1016/j.cirp.2008.09.010.
  • [34] M.A. Rosen and H.A. Kishawy, “Sustainable Manufacturing and Design: Concepts, Practices and Needs,” Sustainability, vol. 4, no. 2, pp. 154–174, 2012, doi: 10.3390/su4020154.
  • [35] I.D.L. Bogle, “A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers,” Engineering, vol. 3, no. 2, pp. 161–165, 2017, doi: 10.1016/J.ENG.2017. 02.003.
  • [36] J. Miranda, R. Pérez-Rodríguez, V. Borja, P.K. Wright, and A. Molina, “Sensing, Smart and Sustainable Product Development (S 3 Product) Reference Framework,” Int. J. Prod. Res., vol. 57, pp. 4391-4412, 2019, doi: 10.1080/00207543.2017.1401237.
  • [37] R. Agrifoglio, C. Cannavale, E. Laurenza, and C. Metall, “How Emerging Digital Technologies Affect Operations Management through co-Creation. Empirical Evidence from the Maritime Industry,” Prod. Plan. Control, vol. 28, no. 16, pp. 1298–1306, 2017, doi: 10.1080/09537287.2017.1375150.
  • [38] D.J. Teece, G. Pisano, and A. Shuen, “Dynamic Capabilities and Strategic Management,” Strateg. Manage. J., vol. 18, no. 7, pp. 509–533, 1997, doi: 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z.
  • [39] N. Slack and M. Lewis, Operations Strategy. Harlow, England: Pearson Education, 2002.
  • [40] D. Stadnicka et al., “Industrial Needs in the Fields of Artificial Intelligence, Internet of Things and Edge Computing,” Sensors, vol. 22, no. 12, p. 4501, 2022, doi: 10.3390/s22124501.
  • [41] T. Bürger and K. Tragl, “SPS-AutomatisierungMit Den Technologien Der IT-Welt Verbinden,” in Industrie 4.0 in Produktion, Automatisierung Und Logistik,Wiesbaden: Springer FachmedienWiesbaden, 2014, pp. 559–569, doi: 10.1007/978-3-658-04682-8_28.
  • [42] D. Küpper, K. Kuhlmann, S. Köcher, T. Dauner, and P. Burggraaff, ”The Factory of the Future,” BCG, 2016, [Online]. Available: https://www.bcgperspectives.com/content/articles/leaning-manufacturing-operations-factory-of-future/. [Accessed: 27 Dec. 2021].
  • [43] Y. Liao, F. Deschamps, E.F.R. Loures, and L.F.P. Ramos, “Past, Present and Future of Industry 4.0 – a Systematic Literature Review and Research Agenda Proposal,” Int. J. Prod. Res., vol. 55, no. 12, pp. 3609–3629, 2017, doi: 10.1080/00207543. 2017.1308576.
  • [44] S. Dais, “Industrie 4.0 – Anstoß, Vision, Vorgehen,” in Industrie 4.0 in Produktion, Automatisierung Und Logistik, Wiesbaden: Springer Fachmedien Wiesbaden, 2014, pp. 625–634, doi: 10.1007/978-3-658-04682-8_33.
  • [45] M. Wiesmüller, “Industrie 4.0: Surfing the Wave?” Elektrotech. Informationstechnik, vol. 131, no. 7, pp. 197–197, 2014, doi: 10.1007/s00502-014-0217-x.
  • [46] A. Kusiak, “Smart Manufacturing,” Int. J. Prod. Res., vol. 56, no. 1–2, 2018, doi: 10.1080/00207543.2017.1351644.
  • [47] S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing Smart Factory of Industrie 4.0: An Outlook,” Int. J. Distrib. Sens. Netw., vol. 12, no. 1, p. 3159805, 2016, doi: 10.1155/2016/3159805.
  • [48] I. Rojek, D. Mikołajewski, and E. Dostatni, “Digital twins in product lifecycle for sustainability in manufacturing and maintenance,” Appl. Sci., vol. 11, no. 1, p. 31, 2021, doi: 10.3390/ app11010031.
  • [49] I. Rojek, D. Mikołajewski, E. Dostatni, and M. Macko, “AI-optimized technological aspects of the material used in 3D printing processes for selected medical applications,” Materials, vol. 13, p. 5437, 2020, doi: 10.3390/ma13235437.
  • [50] I. Rojek, D. Mikołajewski, M. Macko, Z. Szczepański, and E. Dostatni, “Optimization of extrusion-based 3D printing process using neural networks for sustainable development,” Materials, vol. 14, no. 11, p. 2737, 2021, doi: 10.3390/ma14112737.
  • [51] I. Rojek, D. Mikołajewski, P. Kotlarz, M. Macko, and J. Kopowski, “Intelligent System Supporting Technological Process Planning for Machining and 3D Printing,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136722, 2021, doi: 10.24425/ bpasts.2021.136722.
  • [52] I. Rojek, M. Macko, D. Mikołajewski, M. Saga, and T. Burczyński, “Modern methods in the field of machine modelling and simulation as a research and practical issue related to industry 4.0,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136717, 2021, doi: 10.24425/bpasts.2021.136717.
  • [53] G. Caldarini, S. Jaf, and K. McGarry, “A Literature Survey of Recent Advances in Chatbots,” Information, vol. 13, p. 41, 2022, doi: 10.3390/info13010041.
  • [54] S. Kim, J. Eun, C. Oh, B. Suh, and J. Lee, “Bot in the Bunch: Facilitating Group Chat Discussion by Improving Efficiency and Participation with a Chatbot,” in Proc. of the 2020 CHI Conference on Human Factors in Computing Systems. New York, USA, 2020, pp. 1–13, doi: 10.1145/3313831.3376785.
  • [55] A. Godulla, M. Bauer, J. Dietlmeier, A. Lück, M. Matzen, and F. Vaaßen, “Good bot vs. bad bot: Opportunities and consequences of using automated software in corporate communications,” Social Science Open Access Repository (SSOAR), 2021. [Online]. Available: https://nbnresolving.org/urn:nbn:de:0168-ssoar-71669-4.
  • [56] A. Ghoroghi, Y. Rezgui, I. Petri, and T. Beach, “Advances in application of machine learning to life cycle assessment: a literature review,” Int. J. Life Cycle Assess., vol. 27, pp. 433–456, 2022, doi: 10.1007/s11367-022-02030-3.
  • [57] M. Kowal “Sensorless compensation system for thermal deformations of ball screws in machine tools drives,” Arch. Mech.l Technol. Mater., vol. 36, pp. 1–6, 2016.
  • [58] Y. Kriouile, C. Ancourt, K.Wegrzyn-Wolska, and L. Bougueroua, “Generating proposals from corners in RPN to detect bees in dense scenes,” in Proc. 17th Int. Conf. Computer Vision Theory and Applications (VISAPP 2022), 2022.
  • [59] A. Felsberger, F.H. Qaiser, A. Choudhary, and G. Reiner, “The impact of Industry 4.0 on the reconciliation of dynamic capabilities: evidence from the European manufacturing industries,” Prod. Plan. Control, vol. 33, pp. 277–300, 2022, doi: 10.1080/ 09537287.2020.1810765.
  • [60] M. Christopher, Logistics & Supply Chain Management. Harlow: Pearson, 2016.
  • [61] D. Simchi-Levi, P. Kamisky, and E. S. Levi, “Designing and Managing the Supply Chain: Concepts,” in Strategies, and Case Studies. New York: McGraw Hill Education, 2003.
  • [62] M. Ben-Daya, E. Hassini, and Z. Bahroun, “Internet of Things and Supply Chain Management: A Literature Review,” Int. J. Prod. Res., vol. 57, no. 15–16, pp. 4719–4724, 2019. doi: 10.1080/00207543.2017.1402140.
  • [63] S. Agrawal, A. Sahu, and G. Kumar, “A conceptual framework for the implementation of Industry 4.0 in legal informatics,” Sust. Comput. Inform. Syst., vol. 33, p. 100650, 2022. doi: 10.1016/j.suscom.2021.100650.
  • [64] R. Kumar, “Sustainable Manufacturing in the Era of Industry 4.0: A DEMATEL Analysis of Challenges,” in Research Anthology on Cross-Industry Challenges of Industry 4.0, 2021, doi: 10. 4018/978-1-7998-8548-1.ch091.
  • [65] G. Beier, A. Ullrich, S. Niehoff, M. Reisig, and M. Habich, “Industry 4.0: How it is defined from a sociotechnical perspective and how much sustainability it includes – A literature review,” J. Cleaner Prod., vol. 259, p. 120856, 2020. doi: 10.1016/j.jclepro.2020.120856.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efeacb97-c7e0-4a28-aa66-ce9ae70299c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.